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I  Introduction

In England and Wales, water companies are abstracting about a half of total freshwater resources (Environment Agen-
cy, 2008a), which are projected to increase in order to feed the growing populations.  On the other hand, scopes to increase 
water supply in the future are getting narrower given the environmental constraints including the climate change.

In particular, East Anglia region, where population density is high relative to water availability, may face severer water 
stresses in the future.  This implies putting more pressure to the freshwater environment, as more abstractions at water 
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works would lead to fewer flows in downstream rivers and more discharges from sewage works, which are normally more 
polluted than the original source water.

It is therefore essential for water regulators to encourage households to save water, in order to mitigate such environ-
mental pressures.  One of sensible ways to achieve this is to implement “economic incentive” schemes that encourage 
households to save water through price mechanisms.  Hence, water companies in England have been promoting to install 
water meters to households, in order to levy water charges on the basis of actual water consumptions.  In fact, meter-
charged households nearly always use less water than those who pay a fixed charge (Environment Agency, 2008a).

Nevertheless, in order to judge whether such scheme is truly beneficial to society, we need to answer two key questions.  
First, we must quantify exact magnitudes of water saving that might be achieved through water metering.  Second, we ought 
to find whether such water saving is actually beneficial to society, by comparing costs and benefits of water metering.

Thus, this study is aimed at investigating the two questions raised above, and hence appraising social welfare of water 
metering, with East Anglia region as a case study.  The outcome of study would provide useful information in promoting 
water metering in the future.

II  Review of previous studies

1  Estimation of the demand effect of metering
In water industries, the fall in water consumption induced by installation of water meters is termed the “demand effect 

of metering” (DEM).  Although appropriate estimation of the DEM is a prerequisite for the discussions of social welfare 
of metering, it remains a controversial area of study.  For instance, Sharp (2006: 877) pointed out that water uses were 
often deeply embedded in culture, which might not be responsive to water pricing scheme.  Nevertheless, this study will 
focus arguments on economics, especially econometric methodologies, regarding water metering.

The most primitive approach for estimating the DEM is to conduct a cross-sectional survey of households that include both 
non-metered and metered households, and simply compare mean water consumptions between them through the ordinary least 
square (OLS) regression (e.g. Gibbs, 1978).  However, this approach may have shortcomings from the endogeneity problem: if 
there were unobserved heterogeneity between the two groups of households, estimates of the DEM would be biased.

An alternative method would be to construct a simultaneous equation model incorporating instrumental variables.  For 
instance, Agthe et al. (1986) conducted a study in Arizona, USA, where fixed plus block fees were applied, and formed a 
three-equation system comprising a demand function for water and the other two describing the supply side of the water 
market, with the marginal price as endogenous variable.  They demonstrated the OLS estimators of price elasticity were 
indeed biased on the basis of the Hausman test.

Another approach to overcome endogeneity is to employ panel data analysis, which can distinguish the effects of explan-
atory variables from unobserved household-specific effects.  Nauges and Thomas (2000) applied panel data analysis to a 
study on privately operated water utilities in France, where water charges were decided through negotiations between local 
municipalities and private water companies.  Hence, they argued, water prices might be affected by unobserved character-
istics of the communities.  They found there were indeed persistent omitted explanatory variables in each municipality.

The above studies suggest there could be a number of factors that may cause the endogeneity problem, depending 
on the water-pricing scheme under discussion.  This study, on the other hand, is concerned with the demand effect of 
metering in England, where metering is largely optional and water prices are tightly regulated by an independent agency 
OFWAT.  This calls, first of all, for an adequate theoretical framework that fits our situations (for example, we may well 
abstract from the supply-side considerations because of the regulations in water industries).

Thus, Chapter III begins by building microeconomic theoretical models that form the basis of subsequent econometric 
analyses.  Chapter IV will then conduct cross-sectional econometric analyses including the simultaneous equation model, 
with a focus on the endogeneity problem of metering dummy variable.  Chapter V will extend analyses to panel data to 
delineate the partial effect of metering dummy.

2  Social welfare of water metering
Social welfare is a complex subject that could be discussed from many perspectives.  For instance, Chappell and Medd 
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(2008) argued: “current strategies for equitable [metered] charging … inadequately account for social and geographical 
differentiation in supply and demand”.  This study, however, will concentrate on households’ incomes in discussing the 
social welfare of metering, since arguing every aspect of social and geographical dimensions is beyond our scope.

Cowan (2010) theoretically investigated tariff schemes that would bring socially efficient outcomes, when metering is 
optional.  In that case, the scheme required that every meter installed would bring positive benefits both to the society and 
to the household.  He examined cases where water companies may or may not have information on households’ types (i.e. 
their demand functions for water).  He demonstrated that households with smaller elasticity of demand (i.e. those who 
would bring least benefit to society through water saving) would be more likely to opt for metering.  This implies an ad-
verse selection problem: those who are more expensive to serve (in terms of the cost-benefit ratio) would rather choose to 
have the service.  He nonetheless concluded that, when water companies know households’ types, they could implement a 
tariff scheme that discourages “expensive” customers to install meters.  On the other hand, such “separating equilibrium” 
did not exist when companies did not know households’ types.

Dresner and Ekins (2006) empirically investigated, with data from Anglian Water, how different (both the current and 
hypothetical) tariffs make households better-off or worse-off (in respect to tariff reduction).  They found it possible to 
design progressive tariffs that would cause smaller percentage of lower income households to lose, relative to the current 
tariff.  Their study, however, simplified the argument by assuming that metering was compulsory, and there was no DEM 
– water consumption was unchanged upon switching to metering.

This study will follow Cowan’s approach, because his model accurately incorporated the DEM and described the situ-
ation of optional metering.   Specifically, we will study the case where water companies have households’ information, 
as it appears more promising than the asymmetric information case.  We therefore focus on the information accessible to 
water companies: rateable value, which may act as a proximate indicator for incomes.  Chapter III begins by discussing 
theoretical relationships between the rateable value and the water demand.  Chapter VI then builds an empirical model on 
the basis of Cowan’s theory and econometric findings of Chapters IV and V.

III  Microeconomic theory of water consumption and the demand effect of metering

This chapter explores theoretical backgrounds for consumers’ behaviours on water consumption and installation of 
water meters, by employing neoclassical consumer theory (Mas-colell et al., 1995; Varian, 1992).  We aim to derive some 
propositions that are further tested using econometric methods in later chapters.  We employ graphical analyses involving 
indifference curves and budget constraints.  The corresponding mathematical analyses are discussed in Appendix I.  The 
basic model of consumer behaviours on water consumption in Sections III-1-a to III-1-c is established on the basis of Kyle 
(2009).  We then develop it in several directions in Sections III-1-d to III-1-g to derive three Propositions.

1  Graphical analyses
a.  Households’ preference for water
We describe a households’ decision problem facing a two-good economy comprising water (x1) and numeraire (“all 

other goods”, x2).  Regarding households’ preference for water, we impose two restrictions.  First, we assume the prefer-
ence is strictly convex until x1 reaches a satiation point (discussed below), implying that the household has a diminishing 
marginal rate of substitution (MRS) for water.  This is a plausible assumption, because households would demand water 
for various reasons, which can be aligned from the most indispensable (or valuable) to the least, i.e. in the descending 
order of the MRS1.

Second, we assume the demand for water has a satiation point c, and water consumption beyond this point adds no 
extra utility to household, implying that water is a ‘stable good’ in such a situation.  Although this assumption implies 
that households are indifferent between consuming c and c’ where c < c’, we further impose a restriction that households 

1   To begin with, we ought to drink about two litres of water in order to survive, and there is no substitute for water in this regard.  Next come other 
basic human needs such as washing hands and bodies to keep sufficient personal hygiene.  After those needs are satisfied, we then also appreciate 
using water for flushing toilet and washing clothes and dishes.  Finally we may also enjoy so-called ‘discretionary uses’ such as watering gardens 
and feeding swimming pools, which are not essential but may give us some pleasures.
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would choose to consume c rather than c’ when the budget constraint allows them to consume either one of them2.
Consequently, an indifference curve of a household on the two-good plane could be depicted as Fig.1.  The curve is 

strictly convex where x1<c, and horizontal where x1≥c.  According to the monotonicity principle of consumer demands, it 
is apparent that households attain higher utilities when they move on to the northeast direction on the plane.

b.  Budget constraints
In the two-good economy we discuss, a household (with an income m) faces different budget constraints depending on 

the water charging schemes.  First, when water is not metered, households pay a flat charge for water f that is levied propor-
tional to the rateable value (RV) of their properties3, regardless of the amount of water they consume.  Hence we have:

 (1)

where f is a flat charge for water (and hence total expenditure on water), k is a positive constant and RV is a rateable value.
Thus, we have a flat-charge budget constraint Bf:

or　 � (2)

where we normalise the price of numeraire as one.
Hence the budget constraint curve is a horizontal line intercepting the x2 axis at (m–f ) (Fig.2).

Fig. 1  Indifference curve of a household facing the two-good economy

2   This assumption would be plausible because, in spite of the ‘stable-good’ assumption discussed above, consuming (or wasting) water in excess 
of the satiation point might actually be utility decreasing in some senses.  For instance, wasting water (letting tap water running without any uses) 
may give us a sense of guilt; and hearing a noise of running water in a sink whilst sleeping is hardly pleasurable.  However, we will not model such 
possibility as it violates the axiom of monotonicity in the consumer theory and hence complicates the analysis.

3   Exactly speaking, both the flat and metered charges include “standing charge” that is unrelated to the RV or water consumptions.  However, we 
abstract from this fact for simplicity until Chapter VI.

Fig.2  Budget constraints of a household facing the two-good economy
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Second, when water is charged with metering, households pay a charge proportional to the amount of water consumed.  
So we set the price of water (when meter-charged) at p.  Then we have a meter-charge budget constraint Bm:

or　�  (3)

Thus, the budget constraint line is a downward-sloping straight line with a slope –p and an x2 intercept m (Fig.2).  It 
should be noted that, when a household opts for metering, their budget constraint line shifts from Bf to Bm (Fig.2), ceteris 
paribus.  Thus, by holding m constant, the x2 intercept will shift upwards by f.

c.  Optimal consumption of water
Having defined households’ preferences and budget constraints, we are now able to explore the optimal consumption 

bundle X: (x1, x2) for a utility-maximising household.  This is given at a tangency point of the indifference curve and the 
budget constraint, where the maximum utility is attained subject to the affordable budget set discussed in Section III-1-b.

When a household is flat-charged, they face a horizontal budget constraint Bf: x2=m–f, and therefore the tangency is not 
a singleton but a convex set (a straight line segment): S={(x1, x2): x1≥c, x2=m–f} (Fig.3).  Nevertheless, according to the 
“no wasting of water” assumption discussed in Section III-1-a, we may well pin down the flat-charge optimal bundle 
at Xf : (x1

f, x2
f) = (c, m–f).  By contrast, when a household is meter-charged, the optimal bundle shifts to a tangency point 

of Bm and the indifference curve, which is Xm: (x1
m, x2

m) (Fig.3).  (We solve this meter-charge optimal bundle Xm math-
ematically in Appendix I.)

Next, we further model that a utility-maximising household decides to switch from flat charge to water metering or oth-
erwise, by comparing the maximum utility (i.e. indirect utility) subject to the flat-charge constraint (Uf), and that subject 
to the meter-charge constraint (Um), given the household’s m, f and c.  Hence we set the following switching criteria:

A household will:
-  Case (1): opt for metering if Um > Uf

-  Case (2): be indifferent between the two options if Um = Uf and
-  Case (3): opt out if Um < Uf .
Fig.3 shows the Case (2).  Nevertheless, depending on the relative magnitudes of m, f and c, Cases (1) and (3) are also 

possible (Fig.4).

d.  Water consumption and the metering decision
   By exploiting the theoretical framework we have discussed, we next investigate some of the important relationships 

concerning household water consumptions and their decisions on water metering options.  We begin by examining the 
effect of household’s water consumption on the metering decision.  Specifically, we hypothesise here that the amount of 

Fig.3  Optimal bundles for a household facing the two-good economy Fig.4  Schematic diagram for the metering decisions
Note: superscripts 1, 2, 3 correspond to cases (1), (2), (3) in text.
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water consumption before switching to metering would have an influence on the subsequent metering decisions.  Since 
a household is flat-charged before switching4, here we should use the “flat-charge optimal bundle” Xf derived in Section 
III-1-c.  We have derived that the optimal water consumption when flat-charged (x1

f ) would equal to the satiation point, 
c.  Thus, we are required to demonstrate a relationship between household’s c and the metering decision, by holding 
household’s m and f constant.

The relationship is depicted in Fig.5.  Since we hold m and f constant here, the budget constraints Bf and Bm are also 
fixed.  The metering decision therefore depends solely on the position of c, which reflects households’ different prefer-
ences on water5.  Hence Fig.5 shows three cases (1), (2) and (3) with different c whilst fixing Bf and Bm.  According to the 
switching criteria in Section III-1-c, we could therefore conclude that the household will opt for water metering in Case 
(1); be indifferent in Case (2); and opt out in Case (3).  That is, the smaller the c, the more likely the household switches 
to metering.  Hence we established a proposition:

　 Proposition 1:  The less water the household consumes when flat-charged, the more likely they opt for water meter-
ing, ceteris paribus.  In other words, there is a negative relationship between the water consumption before switching 
and the propensity to switch to metering.

e.  Rateable values and the metering decision
We next hypothesise that the rateable value of household has an effect on the metering decisions.  Since a flat-charge 

for water f is paid proportional to the rateable value, we hereafter treat f as a surrogate indicator for the rateable value.  
Although we naturally expect that there is a positive relationship between household’s income m and f, we will hold m 
constant for now whilst allowing f to vary6, in order to keep graphical depiction simple.  We also assume that c is constant7 

4   We are considering here only the option to switch from flat-charge to meter-charge, although the reverse decision is also allowed in part under the 
current scheme.

5   The satiation point c would differ across households for a number of reasons, such as occupancy and the number/size of water-consuming appliances 
and gardens they possess.

6   In other words, we are discussing here about the relative magnitude of f to a given m.  As long as we maintain that m is given, our conclusion to this 
section will hold for any given level of m.  This is because increasing (decreasing) m would simply shift up (down) both Bm and Bf without changing 
their relative positions, whilst indifference curves are assumed to be quasi-linear with respect to the numeraire (Fig.6).  This argument is confirmed 
mathematically in Appendix I, where we demonstrate that the propensity to opt for metering d* is independent of m (equation 61).

7   This assumption appears to contradict our earlier arguments in Section III-1-d, and therefore requires some explanations.  More precisely, we 
assume here: c does not change in response to m and f, once we control for the occupancy and the number/size of appliances etc. the household 
would possess.  [As a concrete example, think of university accommodation.  Each room is flat-charged for water, accommodates the same number 
of persons, and equipped with exactly the same appliances.  Yet both well-offs and worse-offs (due to parents’ incomes) may live there.  Our 
assumption is therefore water consumptions are not systematically different across such rooms.]  In other words, we claim that people’s intrinsic 
desires for water would remain the same no matter how rich or poor they were.  We will test this econometrically in Section IV-2-a-(2).

Fig.5  Relationship between pre-metering water consumption and the metering decisions
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in this and the subsequent sections.
The relationship is depicted in Fig.6.  Since we hold m constant, the budget constraint Bm is fixed, whilst Bf shifts up 

and down in proportion to f.  Since x2 intercept of Bf is (m–f ), Bf is shifted down when f gets larger.  Fig.6 presents three 
cases with different f.  Again, judging from our switching criteria, we could conclude that the household will opt for wa-
ter metering in Case (1); be indifferent in Case (2); and opt out in Case (3).  That is, the larger the f, the more likely the 
household opts for metering.  Hence we established a proposition:

　 Proposition 2:  The larger the rateable value of a household, the more likely they opt for water metering, ceteris 
paribus.  In other words, there is a positive relationship between the rateable value and the propensity to switch to 
metering.

f.  Existence of the demand effect of metering
The demand effect of metering (DEM) is defined as a reduction in water demands when a household switches to water 

metering8.  In Fig.6, it is apparent that x1
m is always located to the left of x1

f when a household switches to metering, hold-
ing c (i.e. occupancies etc.) constant.  Hence we conclude there exists a positive DEM (in the absolute value term).  This 
is confirmed mathematically in Appendix I-2.

g.  Rateable value and the demand effect of metering
We now hypothesise that there is an inverse relationship between the rateable value (hence f ) and the DEM9.  That is, 

the smaller the rateable value, the larger the DEM.  The explanation goes as follows.  We first assume a positive relation-
ship between m and f (that is, the wealthier the household, the higher the RV of their properties).  We then assume dif-
ferent marginal rates of substitution (MRS) for water among households.  Specifically, we assume that the wealthier the 
households, the higher their MRS for water would be.  That is, the rich are more willing to pay (in terms of the numeraire) 
for consuming additional amount of water below the satiation point10.

This assumption leads to progressively steeper indifference curves as we move up the two-good plane, i.e. as the house-
hold gets wealthier (Fig.7).  This in turn suggests that the rich would be prepared to pay for ampler water consumption, 
and hence save less water upon switching to metering, relative to the poor.  This of course implies that the rich tends to 
have smaller DEM11.

 8   It should be noted that we define the DEM in the absolute-value term throughout this study.  Hence, the DEM is always expressed as a positive 
value, although the change in water consumption upon switching to metering is likely to be negative (i.e. the demand is reduced).

 9   This section focuses on households that do switch to metering.  In other words, we abstract from the effect of the RV on metering decisions (Proposition 2).
10   Such a type of utility function has been suggested by Cowan (2010: 804), who modelled that “a household with a higher type has a higher marginal 

utility of consumption at all quantities below its satiation level”.  [However, “higher types” here not necessarily imply wealthier households.]  
Likewise Arbués et al. (2003: 85) reported that several works had estimated different demand functions for different income levels.

11   This conclusion leads us to another claim that: the meter-charged water consumption (x1
m) is increasing in income, ceteris paribus.  This is obvious 

in Fig.7, and will be tested empirically in Section IV-2-a-(2).

Fig.6  Relationship between rateable values and the metering decisions
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We could now summarise the arguments as follows:
(a)  Households with higher f tend to be wealthier.  [By assumption]
(b)  The rich tends to save less water upon switching to metering.  [Due to their higher MRS]
(c)  Hence, they would have smaller DEM.
Thus, we have derived a proposition:

　 Proposition 3:  The larger the rateable value of a household, the smaller the demand effect of metering (DEM), 
ceteris paribus, given the household do switch to metering.  In other words, there is a negative relationship between 
the rateable value and the DEM.

2  Summary
This chapter has derived three fundamental propositions on households’ water consumption on the basis of microeco-

nomic consumer theory.  These will be tested extensively with econometric methods in subsequent chapters.

IV  Econometric analyses of water consumption with cross-sectional data of households

Having established theoretical frameworks for water consumptions and metering decisions in Chapter III, we now 
proceed to challenge those theories with econometric analyses.  This chapter will use a cross-sectional survey on water 
consumption to estimate the demand effect of metering.  Throughout Chapters IV and V, references are made extensively 
to Kyle (2009) regarding the datasets and several econometric techniques.  In particular, we owe most of the materials to 
her study in discussing the coherency condition in Section IV-2-d-(1).  On the other hand, we extend her analyses in Sec-
tions IV-2-a-(2), IV-2-b and IV-2-d-(3), and substantially revise the modelling descriptions in Section V-1.

1  Background and descriptions of data
a.  Background of the data
The data used in Chapters IV and V were obtained from the Anglian Water Services Ltd., which is the monopoly 

supplier of water covering most of the East Anglia region.  From 1990 to 2001, the company conducted a survey called 
“Survey of domestic water consumption”, in order to investigate determinants of household water consumption (Kyle, 
2009).  The sample consists of 1,873 non-metered and 903 metered households, with a total of 2,77612.  Those households 
were fitted with a supplementary meter, which recorded water consumption data at every fifteen minutes.  In addition, 

Fig.7  Relationship between rateable values and the DEM
Note: Cases (1), (2) and (3) represent low, middle, and high-income households, respectively.
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they were interviewed to collect additional information on their socio-economic characteristics.
The data set used in this chapter was observed on the above sample, in a one-year period between 1999 and 2000.  The 

sample did not contain households that switched from non-metered to metered status in the course of the observation 
period.  The original data of water consumption was summed up to obtain an annual consumption of water.  Thus, the 
procedures imply that the water consumption data were collected after the households had made their decisions to opt 
for metering or otherwise.  As we discuss later, this point has an important ramification in discussing an effect of water 
consumption on the metering decision.

b.  Definitions and descriptions of the data
Definitions of the variables used in this chapter are presented in Table 1, and their descriptive statistics in Table 2.  

Table 2 summarises the statistics of the whole sample as well as those for metered and non-metered households only13.  

12   Households were initially sampled on the basis of a stratified random sampling approach, although actual inclusion in the survey was conditional 
on their approvals.

13  All the statistical calculations of this study are performed with the statistical software Stata 11 (StataCorp LP).

Table 1  Definitions of the variables

Variable Definitions and descriptions
Water consumption Household’s annual water consumption in 1999-2000 (litres)
Meter Water-metering dummy: 1 if household metered; 0 if not
Occupancy Number of persons living in a household
Dummy variables concerning water-consuming appliances and activities
  Washing machine 1 if owned; 0 if not
  Dishwasher 1 if owned; 0 if not
  Dual-flush toilet 1 if owned; 0 if not (Dual-flush toilet is a device intended to reduce water consumption in flushing.)
  Power shower 1 if owned; 0 if not
  Wash vehicle 1 if washes vehicle; 0 if not
  Hose 1 if owned; 0 if not (Hose means summer hoses normally used for watering gardens)
  Sprinkler 1 if owned; 0 if not
  Water softener 1 if owned; 0 if not
Dummy variables indicating households’ income status
  ACORN A 1 if top occupational class (wealthy achievers); 0 if not
  ACORN B 1 if second occupational class (urban prosperity); 0 if not
  ACORN C 1 if third occupational class (comfortably off); 0 if not
  ACORN D 1 if fourth occupational class (moderate means); 0 if not
  ACORN E 1 if fifth occupational class (hard-pressed); 0 if not

Rateable value (RV) Rateable value of household when a house was built
Year-built The year household was built (a.d.) minus 1900
Note: ACORN stands for “A Classification of Residential Neighbourhoods” (see text, Section IV-1-b-(3)).

　 Whole sample Metered households Non-metered households
Variable Obs Mean S.D. Min Max Obs Mean S.D. Min Max Obs Mean S.D. Min Max
Water consumption
   annual (L) 2776 85596 61086 525 417981 903 55423 42278 570 231529 1873 100144 63398 525 417981 
   in natural log 2776 11.023 0.962 6.263 12.943 903 10.563 0.973 6.346 12.352 1873 11.244 0.874 6.263 12.943 
   per-day (L)* 2776 234.511 167.359 903 151.843 115.830 　 1873 274.366 173.694 
   per-capita-day (L)** 2776 90.291 125.463 903 77.995 114.230 　 1873 94.257 128.056 
Meter 2776 0.325 0.469 0 1 　 　
Occupancy 2776 2.597 1.334 1 9 903 1.947 1.014 1 6 1873 2.911 1.356 1 9

Washing machine 2776 0.949 0.220 0 1 903 0.908 0.289 0 1 1873 0.968 0.175 0 1
Dishwasher 2776 0.254 0.435 0 1 903 0.262 0.440 0 1 1873 0.249 0.433 0 1
Dual-flush toilet 2776 0.141 0.348 0 1 903 0.120 0.325 0 1 1873 0.151 0.358 0 1
Power shower 2776 0.220 0.414 0 1 903 0.255 0.436 0 1 1873 0.203 0.402 0 1
Wash vehicle 2776 0.173 0.378 0 1 903 0.116 0.321 0 1 1873 0.200 0.400 0 1
Hose 2776 0.564 0.496 0 1 903 0.503 0.500 0 1 1873 0.593 0.491 0 1
Sprinkler 2776 0.055 0.228 0 1 903 0.061 0.239 0 1 1873 0.052 0.222 0 1
Water softener 2776 0.017 0.130 0 1 903 0.022 0.147 0 1 1873 0.015 0.121 0 1

ACORN A 2776 0.216 0.411 0 1 903 0.268 0.443 0 1 1873 0.191 0.393 0 1
ACORN B 2776 0.189 0.392 0 1 903 0.161 0.367 0 1 1873 0.203 0.403 0 1
ACORN C 2776 0.139 0.346 0 1 903 0.121 0.326 0 1 1873 0.148 0.355 0 1
ACORN D 2776 0.327 0.469 0 1 903 0.340 0.474 0 1 1873 0.321 0.467 0 1
ACORN E 2776 0.128 0.334 0 1 903 0.111 0.314 0 1 1873 0.137 0.344 0 1

Rateable value (RV) 2776 216.966 90.250 46 980 903 249.498 105.405 68 662 1873 201.282 77.227 46 980
Year-built (minus 1900) 2776 59.139 21.480 5 95 903 62.829 18.477 5 95 1873 57.360 22.577 5 95
Note: Obs: the number of observations; S.D.: standard deviation
* Per-day water consumption = annual consumption / 365
** Per-capita-day consumption = per-day consumption / occupancy.

Table 2  Descriptive statistics of the cross-sectional data
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Further descriptions of some variables are provided below.

(1)  Water consumption
The procedures to generate water consumption data have been described in Section IV-1-a.  Table 2 shows that there 

is a big difference in mean water consumptions between the metered (55,423) and the non-metered (100,144).  Neverthe-
less, we should be careful not to interpret this as the demand effect of metering, as we discuss in Section IV-2-c.

A histogram of water consumption (Fig.8) shows that the consumption is roughly uni-modal but heavily skewed to 
the right, with a long tail at large consumption.  By contrast, a histogram of natural log of water consumption (Fig.9) is 
skewed to the left, but it appears closer to symmetry than Fig.8.  Hence we choose to use the natural log in the analyses.  
The use of natural log in the dependent variable also gives a convenience that OLS estimators of parameters (multiplied 
by 100) represent semi-elasticity, that is, a percentage change in the dependent variable in response to a unit change in 
explanatory variables.

(2)  Occupancy
We naturally expect that larger occupancy of household would lead to larger water consumption.  Nevertheless, such a 

relationship may not be linear.  Hence, a scatter plot is drawn in Fig.10 with the Lowess smoother, which provides locally 
weighted scatter-plot smoothing.

A shape of the Lowess smoother implies that there is a concave relationship between the occupancy and the water con-
sumption.  Hence we shall include a square of occupancy in the explanatory variables to accommodate such concavity.

Fig.8  Histogram of annual water consumption (in litres) Fig.9  Histogram of natural log of annual water consumption

Fig.10  Log of annual water consumption against occupancy with the Lowess smoother
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(3)  Dummy variables
We include a dummy on water metering (meter) as well as those regarding water-consuming appliances and activities 

of households, and those indicating their social status (ACORN dummies) (Table 1).  In Table 2, the means of the dummy 
variables indicate the frequency of household belonging to the “yes” category.  For instance, 32.5% of the sample had a 
water meter installed, 94.9% had a washing machine, and so on.

ACORN (which stands for “A Classification of Residential Neighbourhoods”) is a geo-demographic classification sys-
tem for small areas in the UK, due to CACI Ltd.14.  There were five ACORN groups in the region, ranging from ACORN 
A (the highest socio-economic group) to ACORN E (the lowest).  (The labels that define each group are provided in 
parentheses in Table 1.)  These dummies are expected to act as surrogate indicators for household incomes, which is not 
available in this data set.

(4)  Rateable value
The rateable value (RV) of a property is closely related to its market value, and is determined by a local government at 

the time a house is built.  The RV is what determines a flat charge payable if a household is non-metered.
In Chapter III, we have theorised that the higher the RV, the more likely the household would opt for metering.  This is 

provisionally confirmed in Table 2, which shows the mean RV of the metered (249) is larger than that of the non-metered 
(201).  This is formally analysed in Section IV-2-b.

(5)  Year built
This variable indicates the year in which the property was built.  Since it is given as interval data, we shall use the mid-

point of each interval to represent the year built15.  We then subtract 1900 so that the variable has a sensible range.
The reason why we include this variable for the analyses is that it has an important effect on the probability of metering: 

properties built in later years have higher probabilities of being metered, simply because installations of meters to new 
properties have become routine in recent years.  This is confirmed in Table 3, which shows generally higher proportions 
of metered households for newer properties.

2  Econometric models with a single cross-sectional data
a.  Model 1: the OLS model on water consumption
(1) The OLS analysis on water consumption
Since our final objective of this chapter is to quantify the demand effect of metering, we first build an ordinary least 

square (OLS) model with (natural log of) annual water consumption as the dependent variable, and other variables de-
scribed in Section IV-1 (including the metering dummy) as explanatory variables.

   Specifically, we assume a model:

�  (4)

Table 3  Percentage of metered households for each “year-built”

Year-built n % metered

1905 120 7.5 
1915 43 20.9 
1925 93 26.9 
1935 369 27.4 
1945 174 30.5 
1955 390 35.6 
1965 513 37.8 
1975 643 30.8 
1985 411 41.8 
1995 20 15.0 

Total 2776 32.5 

14  For more information, see: http://www.caci.co.uk/
15  Properties built before 1910 were assigned a year of 1905.
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 ui ∼ N(0, σ2)
where: yi is the natural logarithm of annual water consumption by a household i,
 di is the metering dummy: di=1 if metered; 0 otherwise.
 xi is a vector of other explanatory variables describing household characteristics,
	 γ is a parameter representing a proportionate effect of metering on consumption,
	 β is a vector of parameters, the first of which is an intercept.
The results of the OLS estimation are reported in Table 4.  In Model 1a, xi contains all the available variables, whereas 

Model 1b excludes RV and year-built.  These two variables will have to be excluded when we construct a simultaneous 
equation model later.  Hence we will focus on Model 1b, which would be compatible with later models.

R2 for Model 1b (0.28) is disappointing but not too low, given this is a cross-sectional dataset involving a lot of “noise”.  
The Breusch-Pagan test for heteroscedasticity is conducted for both models, where:

 H0: constant variance
  and the test statistic follows χ2(k−1), where k−1 is the number of explanatory variables excluding the con-

stant.
According to the reported test statistic (Table 4), we reject H0 at the 1% level and hence conclude there is strong evidence 
of heteroscedasticity, whose presence implies that OLS standard errors are invalid.  Therefore, we alternatively use het-
eroscedasticity-robust (White-corrected) standard errors, which have been reported in Table 4.

Next, the coefficients of Model 1b could be interpreted as follows.
-    The coefficient on meter implies that metered households would consume 42.9% less water than non-metered ones 

on average, ceteris paribus.  Nonetheless, we should not interpret this as the DEM, for reasons explained later.
-    The positive sign of the occupancy coefficient together with the negative sign of the occupancy-squared coefficient 

imply a concave relationship between occupancy and the dependent variable.  This may make sense because, as the 
occupancy increases, the members of a household tend to share some water-consuming facilities such as dishwash-
ers and washing machines.  Such sharing may reduce per-capita water consumption as occupancy increases, and 

Table 4  Estimated log-linear OLS models for water consumption (1)

　 Model 1a Model 1b

Variables Coefficients Std. errors 　 Coefficients Std. errors 　
Constant 9.456997 0.1207642 ** 9.568039 0.110838 **
Meter -0.5017501 0.0405846 ** -0.4293487 0.0380484 **
Occupancy 0.4205556 0.0434185 ** 0.4515597 0.0438446 **
Occupancy-squared -0.0350478 0.0060113 ** -0.0386853 0.0060785 **
Washing machine 0.4656842 0.0912308 ** 0.4893487 0.0918606 **
Dishwasher 0.0330314 0.039196 　 0.1148438 0.0365226 **
Dual-flush toilet 0.0316573 0.0420191 　 0.0305476 0.0423491
Power shower 0.0949787 0.0365898 ** 0.1216313 0.0365586 **
Wash vehicle 0.0983317 0.0407352 * 0.1104261 0.0411423 **
Hose 0.1318097 0.0353448 ** 0.156608 0.035976 **
Sprinkler 0.0391326 0.0542091 　 0.0719033 0.0558938
Water softener 0.2128433 0.096525 * 0.3019385 0.0967389 **
ACORN A 0.1290317 0.0599784 * 0.2255011 0.0582402 **
ACORN B 0.0359772 0.0591985 　 0.0825881 0.0569571
ACORN C 0.0637679 0.064731 　 0.080075 0.0640318
ACORN D 0.0837083 0.0546964 　 0.1058565 0.0551216
ACORN E (base) 0 0 　 0 0
Rateable value (RV) 0.0014108 0.0002298 **
Year-built (minus 1900) -0.0002452 0.0008833 　
　 　
Sample size 2776 　 2776
R2 0.2900 　 0.2789 
Breusch-Pagan test 122.76 (df=17; p=0.0000) 101.52 (df=15; p=0.0000)
Dependent variable: ln (water consumption)
Heteroscadasticity-robust standard errors are shown.
* Significant (p<0.05); ** Strongly significant (p<0.01)
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hence result in the concave relationship observed.
-    Dummy variables on household equipments (excluding dual-flush toilet and sprinkler) are all positive and signifi-

cant at the 1% level.  This implies that their uses have strong positive effects on water consumption.  In particular, 
a strong effect of washing machine (48.9%) should be noticed.  This could be expected because, when a household 
does not possess a washing machine, they may tend to get laundry services outside home.  On the other hand, a 
positive and insignificant coefficient on dual-flush toilet is disappointing, because it is intended to save water con-
sumption in flushing toilet.

-    The ACORN variables (excluding ACORN A) are individually insignificant.  Nonetheless, the F-test16 implies that 
ACORN variables are jointly significant at the 5% level.  Hence we choose to maintain them in the independent vari-
able.  Further analyses on ACORN variables are presented below in Section IV-2-a-(2).

(2)  Further analyses on relationships between income and water consumption
This section challenges the relationship between income and water consumption proposed in Chapter III, by extending 

the proceeding OLS analyses.  Firstly, throughout Sections III-1-e to III-1-g, we hypothesised that the satiation point, c 
(=x1

f ), would be independent of incomes, once we control for occupancy and household appliances etc. (Figs.6 and 7).  
Now we shall test this hypothesis, by assuming that: ACORN variables act as proxy indicators for household incomes; 
and water consumptions of non-metered households equal the satiation point.  By accepting these assumptions, then, the 
hypothesis can be interpreted as: ACORN variables are jointly insignificant in determining water consumptions of non-
metered households, given occupancy and appliance dummies are included in the explanatory variables.

Thus, after picking only non-metered households from the whole sample, we conduct the F-test on Model 1b (but with 
meter excluded due to multicollinearity):

H0: 
Number of restrictions=4  df =1858  R2

R=0.1904  R2
U=0.1928.

F=1.3811 < 2.37=F0.05, 4, ∞.  Hence we fail to reject H0 at the 5% level.
Hence we conclude that ACORN variables are jointly insignificant in determining water consumption of non-metered 

households.  In addition, it is shown that all the ACORN variables are individually insignificant at the 5% level when only 
non-metered households are estimated (Model 1c, Table 5).  All these results would suggest that water consumptions of 
non-metered households (and hence their satiation points) would be independent of income levels, ceteris paribus.

Secondly, our discussions in Section III-1-g also suggested that water consumption of metered households, x1
m, would 

be increasing in income (Fig.7), holding occupancy and appliances etc. constant.  This can be tested using Model 1d 
(Table 5), where only metered households are estimated.

   Here the coefficients on ACORN dummies indicate the percentage-point difference in water consumption between 
ACORN A (or B, C, D) and ACORN E (base), which is the least well-off group.  Therefore, if the above hypothesis is true, 
these coefficients should be significantly positive (because the well-offs should have higher water consumption relative 
to the worse-offs when meter-charged).  Table 5 indicates that coefficients on ACORN A and D are indeed significantly 
positive at the 1% level, and the magnitudes of these coefficients are larger than those in Model 1b (Table 4) or Model 
1c.  F-test17 also gives evidence that the ACORN variables are jointly significant at the 5% level in determining water 
consumption of metered households.

In summary, these results on Models 1c and 1d together suggest that the theoretic model we built in Section III-1-g (i.e. 
constant x1

f and increasing x1
m with respect to income, ceteris paribus) would be plausible, although the evidence is not 

decisive (as the variables ACORN B and C remain insignificant in Model 1d).

16   We conduct a F-test on Model 1b as the unrestricted model:

     H0: 

     Number of restrictions=4  Degree of freedom=2760  R2
R=0.2741  R2

U=0.2789.
     Hence F=4.5930 > 2.37=F0.05, 4, ∞.  Hence we reject H0 at the 5% level.
17  We conduct the F-test for metered households only:

     H0: 

     Number of restrictions=4  df=888  R2
R=0.1843  R2

U=0.2065.
     Hence F=6.2110 > 2.37=F0.05, 4, ∞.  Hence we reject H0 at the 5% level.
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b.  Model 2: the probit model on metering decisions
In Chapter III, we have theorised that water consumption and RV would have an effect on the metering decision.  

Hence we next explore an econometric model with the water-metering dummy as dependent variable, and other variables 
as explanatory ones.  Since the dependent variable is a binary one, we should employ qualitative response (QR) models 
that have been developed for dealing with such cases.  Specifically, we shall use the probit model, which is one of QR 
models.

Hence, we assume a model:
  (5)
 vi ∼ N(0, 1)
 di = 1 (opt for metering) if di

* > 0;
 di = 0 (opt out) if di

* ≤ 0
where:  di

* is a latent propensity to opt for water metering,
 zi is a vector of explanatory variables describing household characteristics,
 α is a vector of parameters, the first of which is an intercept.

The results of probit estimation are reported in Table 6.  In Model 2a, zi contains all the available variables, whereas 
Model 2b excludes log of water consumption.  First, Model 2a shows that water consumption has strong negative effect 
on meter installations.  That is, the more water the household consumes, the less likely they would have a water meter.  
This appears to endorse our earlier Proposition 1 (Section III-1-d).  Nevertheless, that proposition was concerned with the 
water consumption before the metering decision is made, whereas this cross-sectional data is about the water consump-
tion after the decision is made.  Hence exact analogy cannot be drawn between Proposition 1 and the current observation.  
Besides, we will have to exclude water consumption from this equation anyway when we later construct a simultaneous 
equation model, in order to meet the requirement of coherency.  For these reasons, we will exclude water consumption 
from this model, and hence focus on Model 2b, which would be compatible with later models.

Table 5  Estimated log-linear OLS models for water consumption (2)

　 Model 1c
(non-metered only)

Model 1d
(metered only)　

Variables Coefficients Std. errors 　 Coefficients Std. errors 　
Constant 9.639336 0.1415714 ** 8.894288 0.1795075 **
Meter (omitted) 　 (omitted)
Occupancy 0.4652651 0.0504361 ** 0.5673133 0.1278768 **
Occupancy-squared -0.0386122 0.0066199 ** -0.0699946 0.0250039 **
Washing machine 0.4380143 0.1181706 ** 0.4993862 0.1388852 **
Dishwasher 0.1260598 0.0426819 ** 0.0687615 0.0704544
Dual-flush toilet 0.0196069 0.0459181 　 0.0405792 0.094333
Power shower 0.0835544 0.0426049 * 0.2097228 0.0676766 **
Wash vehicle 0.0911123 0.0459246 * 0.1901445 0.0896368 *
Hose 0.1619219 0.0434059 ** 0.1617878 0.0615619 **
Sprinkler 0.0127534 0.059067 　 0.1656405 0.1098326
Water softener 0.3830476 0.1170115 ** 0.1755148 0.1588119
ACORN A 0.1231678 0.0679741 　 0.4202365 0.1130535 **
ACORN B 0.0822888 0.0642613 　 0.0809853 0.1193665
ACORN C 0.0476031 0.0732993 　 0.1652005 0.1261905
ACORN D 0.0165228 0.0655141 　 0.3183032 0.1045006 **
ACORN E (base) 0 0 　 0 0
　 　
Sample size 1873 　 903
R2 0.1928 　 　 0.2065 　 　
Dependent variable: ln (water consumption)
Heteroscadasticity-robust standard errors are shown.
* Significant (p<0.05); ** Strongly significant (p<0.01)
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Next, the coefficients of Model 2b could be interpreted as follows:
-    The coefficient on RV is significantly positive.  That is, the larger the RV, the more likely the household would install 

a water meter.  This would endorse our earlier Proposition 2 (Section III-1-e).
-    The coefficient on year-built is significantly positive.  Hence the newer the properties, the more likely they have a 

water meter.  This is expected because installation of meters to new properties has become routine in recent years.
-    The negative coefficient on occupancy together with the positive one on occupancy-squared implies an inverse 

and convex relationship between occupancy and switching to metering.  This is plausible because, holding other 
conditions equal, higher occupancy implies higher water consumption (by Model 1b), which would in turn reduce 
propensity to opt for metering (by Proposition 1).

c.  Endogeneity problem of the demand effect of metering
In Section III-1-d, we have theorised that the more water the household would consume when flat-charged, the less 

likely they are to opt for metering (Proposition 1).  A ramification of this proposition is an endogeneity problem when 
estimating the DEM, which is explained by Fig.11 below.

Table 6  Estimated probit models for the metering decisions

　 Model 2a Model 2b

Variables Coefficients Std. errors 　 Coefficients Std. errors 　
Constant 3.678862 0.3704942 ** 0.0082197 0.1712895
Rateable value (RV) 0.005625 0.0005549 ** 0.0051566 0.0004946 **
Year-built (minus 1900) 0.0059733 0.0015366 ** 0.0059049 0.001476 **
Occupancy -0.6523707 0.0851486 ** -0.8687662 0.0743547 **
Occupancy-squared 0.0502258 0.0132878 ** 0.0710574 0.0110429 **
Washing machine -0.1143826 0.1292469 　 -0.290333 0.1209672 *
Dishwasher 0.0129428 0.0738315 　 0.0089908 0.0727995
Dual-flush toilet -0.0873819 0.0819958 　 -0.1128291 0.0800711
Power shower 0.1875031 0.0681181 ** 0.1515212 0.0664262 *
Wash vehicle -0.2942412 0.089252 ** -0.3470926 0.0865208 **
Hose -0.1360636 0.0648129 * -0.1740819 0.0630326 **
Sprinkler 0.0600144 0.1283189 　 0.0406933 0.133043
Water softener 0.0931076 0.243146 　 -0.0043498 0.2310298
ACORN A 0.1037189 0.1084513 　 0.0402391 0.1030392
ACORN B -0.0614428 0.1059498 　 -0.0917561 0.1028327
ACORN C -0.0390381 0.1082942 　 -0.0660316 0.1045914
ACORN D 0.149765 0.0922577 　 0.1028732 0.0880031
ACORN E (base) 0 0 　 0 0
ln(Water consumption) -0.4035086 0.036242 **
　 　
Sample size 2776 　 2776
Log pseudolikelihood -1303.2312 　 -1382.0694
Pseudo R2 0.2558 　 　 0.2107 　 　
Dependent variable: Meter (the water-metering dummy)
Heteroscadasticity-robust standard errors are shown.
* Significant (p<0.05); ** Strongly significant (p<0.01)

Fig.11  Schematic diagram for the DEM and observed differences
(Source: modified after Kyle (2009: 58))
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Fig.11 schematically presents time paths of water consumptions of four representative households.  Households 1 and 
2 represent low-consumption households, which opt for metering, whilst Households 3 and 4 stand for high-consumption 
households, which opt out.  Since the DEM is defined as the fall in water consumption when a household installs a meter, 
it should be measured as the small dips in consumption labelled “True DEM”.

   On the other hand, since the cross-sectional data were collected after the households made their decisions, and ob-
serve consumptions of different households at a single period of time, the observed difference between the metered vs the 
non-metered should be the big double-pointed arrow on the right side of Fig.11.  As such, the observed mean difference 
in the OLS Model 1b (42.9%, Table 4) could grossly overestimate the true DEM.

d.  Model 3: the simultaneous equation model
Our previous discussions have suggested that the econometric models 1b and 2b are not independent ones, but rather a 

system of equations in which the metering dummy is jointly determined, or endogenous.  Hence we next set out to con-
struct a simultaneous equation model that can incorporate such interdependency of equations.

In Section IV-2-c, we focused our attention on the endogeneity of the water-metering dummy, which is a qualitative 
response (QR) variable.  When endogenous variables are QR ones, we need to address two important issues, namely co-
herency and identification (Heckman, 1978; Amemiya, 1978).

(1)  Coherency
   Coherency condition18 is a requirement that there be a one-to-one mapping between the vector of values taken by the 

stochastic disturbance terms appearing in the model, and the vector of realisations of the endogenous variables.  Coher-
ency usually requires restrictions over and above identification restrictions.  We now aim to derive the coherency condi-
tion using a simplified system of equations.  We assume:

  (6)

� � (7)

where: y is water consumption,
 d is water-metering dummy,
 d* is the propensity to opt for metering (d = 1 if d*>0; d = 0 otherwise),
 α is a negative effect of metering on consumption, which represents the DEM,
 β is a negative effect of consumption on propensity to switch to metering,
 u and v are disturbance terms.
   If a household has no meter, then d = 0, and hence equation (6) becomes y = u.  Inserting this into (7), we have: 

  Since d = 0, it must be that:

or � (8)

If, by contrast, a household has a meter, then d = 1, and hence equation (6) becomes y = α + u.  Inserting this into (7), 
we have:   Since d = 1, it must be that:

or � (9)

The above conditions (8) and (9) are represented by hatched areas in a u-v plane (Fig.12).  Since both α and β are 
negative, −αβ is negative.  This implies the two hatched areas have an overlapping region (Fig.12).  This in turn suggests 
that, if u and v happen to take values within this region, a household is both metered and non-metered at the same time.  

18  This is referred to as “conditions for existence of the model” in Heckman (1978: 935).
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This is clearly contradictory, and therefore we must eliminate this region.  This is indeed the requirement of coherency, 
which demands that, for every pair (u, v), there must be a unique pair (d, y).  Hence we impose a restriction αβ	= 0, that 
is, either α	= 0 or β	= 0.

We choose to set β	= 0 so that α	≠	0.  This implies we allow consumption to depend on metering, but not vice versa.  
In other words, the DEM should be non-zero.  We may justify this firstly because we have theorised in Chapter III that 
there exists a positive DEM, and it is our focus of econometric analyses to explore the magnitude of DEM.  Secondly, 
consumption in the cross-sectional data is observed after the decision is made (see Fig.11), whereas our theory suggests 
that the decision would depend on the consumption before the decision is made (Proposition 1).  Therefore, allowing the 
post-decision consumption to affect the decision itself (i.e. setting β	≠	0) would be not only illogical but also incompatible 
with our theory19.

(2)  Identification
A system of equations would be identified if there were any way to obtain unique estimates of parameters of the model.  

In order for the system to be identified, we need to meet the order condition (which is a necessary condition for identifica-
tion), and the rank condition (which is a sufficient condition).

First, the order condition requires: [the number of exogenous variables excluded from the equation] ≥ [the number of 
endogenous variables included on the RHS (right-hand side)].  Here our first equation is:

  (10)
 ui ∼ N(0, σ2)

where endogenous variable on the RHS is di.  (Other explanatory variables xi are taken as exogenous.)
The second equation is:

� � (11)
 vi ∼ N(0, 1)
 di = 1 if di

* > 0;
 di = 0 if di

* ≤ 0
where the endogenous variable y has been excluded from the RHS to meet the coherency condition.

Therefore, to meet the order condition, at least one exogenous variable must be excluded from equation (10).  Thus, 
we choose to exclude RV and year-built from equation (10) because: (1) both variables have significant effects on d* (see 
Model 2b, Table 6); and (2) there are no inherent reasons to believe that these variables, which represent characteristics 

Fig.12  An incoherent case for the simultaneous equation model

19   Stating this from a slightly different perspective, we claim that: for a household with given characteristics, there are two different consumption 
levels, one for the metered and the other for the non-metered.  Since the consumption is not uniquely determined, it is meaningless to consider its 
effect on another variable.



BULLETIN OF THE NATIONAL INSTITUTE FOR RURAL ENGINEERING   No.50   (2011)76

of the properties, have direct effects on water consumption20.
Having met the order condition, we need to check for the rank condition.  Hence we write a matrix of parameters as 

follows:

  (12)

where: Rows 1 and 2 indicate parameters of equations (10) and (11), respectively,
  Columns (from left to right) are parameters of y, d (or d*), RV, year-built, and the other explanatory variables.
　For equation (10), we require: rank[α1 α2] ≥ 1, which is met.
　For equation (11), we require: rank[−1] ≥ 1, which is met.
　Hence the rank condition is satisfied.
(3)  Simultaneous equation model
In summary, we have constructed a simultaneous equation model 3 comprising equations (10) and (11), in which RV 

and year-built are excluded from equation (10), and y from equation (11).  In other words, we set to combine our earlier 
Models 1b and 2b.  Because di is now endogenous in equation (10), we shall replace di by the estimate of di obtained 
through equation (11), which acts as an instrumental variable.  This model is also called the treatment-effects model 
(Greene, 2008: 889), which could overcome a problem of overestimating the treatment effect (which is the DEM in our 
context) in the presence of self-selection issues.

The model disturbances u and v are assumed to follow a bivariate normal distribution with zero mean and covariance 
matrix:

  (13)

The difference in consumptions between the metered and the non-metered is, then (Greene, 2008: 890):

 � (14)

where: φ is the standard normal density function,
	 Φ is the standard normal cumulative distribution function.
Equation (14) implies that, if the correlation between the disturbances, ρ, is zero, the OLS model would give an unbi-

ased estimator of the treatment effect γ.  On the other hand, if ρ is significantly negative, the second term of the right-hand 
side of (14) would bias the OLS estimator away from zero, since γ would also be negative.  Hence, the OLS estimator 
would overestimate γ (in the absolute value term) when ρ is negative.

The results of estimations are summarised in Table 7.  First of all, the reported λ (=ρσ) is significantly negative.  This 
implies, through equation (14), that the OLS estimator would overestimate the treatment effect.  This is endorsed by a 
comparison of estimates of the meter coefficient between Model 1b (the OLS estimator) of 42.9%, and Model 3 (the 
treatment-effects estimator) of 9.5%21.  This would give us enough reason to prefer Model 3 to Model 1b in estimating 
the DEM.

3  Summary
This chapter has attempted to estimate the DEM using a cross-sectional data set.  Since our theory has suggested an 

endogeneity problem on the meter dummy, we extended our analysis to the treatment-effects model, which could accom-

20   After all, it is the persons and appliances present in the property, not the property itself, which consume water.  Although a significant effect of RV 
on consumption was observed in the OLS Model 1a (Table 4), we may well regard this as an indirect effect via incomes etc.

21  However, unfortunately it is not significantly different from zero at the 5% level.
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modate the problem.  The estimated results indeed suggested such endogeneity, and hence the model’s superiority over 
the OLS model in estimating the DEM.  However, the conclusion remained indecisive, as the metering dummy was insig-
nificant in the treatment-effects model.  This leads us to explore panel data, which is a theme of the next chapter.

Table 7  Estimated parameters for three models

　 Model 1b Model 2b Model 3

　 (OLS) (probit) (treatment-effects)

Variables            Coeff.  Std. err. 　            Coeff.  Std. err. 　            Coeff. Std. err. 　
ln (Water consumption) 　 　 　 　 　
Constant 9.568 0.111 ** 　 　 　 9.288 0.113 **
Meter -0.429 0.038 ** 　 　 -0.095 0.076 
Occupancy 0.452 0.044 ** 　 　 0.544 0.049 **
Occupancy-squared -0.039 0.006 ** 　 　 -0.047 0.007 **
Washing machine 0.489 0.092 ** 　 　 0.520 0.076 **
Dishwasher 0.115 0.037 ** 　 　 0.081 0.040 *
Dual-flush toilet 0.031 0.042 　 　 　 0.036 0.046 
Power shower 0.122 0.037 ** 　 　 0.095 0.039 *
Wash vehicle 0.110 0.041 ** 　 　 0.136 0.046 **
Hose 0.157 0.036 ** 　 　 0.165 0.036 **
Sprinkler 0.072 0.056 　 　 　 0.049 0.071 
Water softener 0.302 0.097 ** 　 　 0.267 0.122 *
ACORN A 0.226 0.058 ** 　 　 0.178 0.057 **
ACORN B 0.083 0.057 　 　 　 0.061 0.058 
ACORN C 0.080 0.064 　 　 　 0.072 0.062 
ACORN D 0.106 0.055 　 　 　 0.085 0.052 
ACORN E (base) 0 0 　 　 　 　 0 0 　

　 　 　 　
ρ 　 　 　 　 -0.265 0.051 
σ 0.819 　 　 　 0.829 0.012 
λ 　 　 　 　 -0.220 0.044 

　 　 　 　
Meter 　 　 　 　
Constant 　 　 　 0.008 0.171 　 -0.038 0.179 　
Rateable value 　 　 0.005 0.000495 ** 0.005 0.000 **
Year-built 　 　 0.006 0.001 ** 0.006 0.001 **
Occupancy 　 　 -0.869 0.074 ** -0.843 0.088 **
Occupancy-squared 　 　 0.071 0.011 ** 0.067 0.014 **
Washing machine 　 　 -0.290 0.121 * -0.305 0.121 *
Dishwasher 　 　 0.009 0.073 　 -0.014 0.073 
Dual-flush toilet 　 　 -0.113 0.080 　 -0.101 0.083 
Power shower 　 　 0.152 0.066 * 0.144 0.067 *
Wash vehicle 　 　 -0.347 0.087 ** -0.337 0.084 **
Hose 　 　 -0.174 0.063 ** -0.190 0.063 **
Sprinkler 　 　 0.041 0.133 　 0.039 0.124 
Water softener 　 　 -0.004 0.231 　 -0.014 0.209 
ACORN A 　 　 0.040 0.103 　 0.031 0.103 
ACORN B 　 　 -0.092 0.103 　 -0.086 0.105 
ACORN C 　 　 -0.066 0.105 　 -0.065 0.111 
ACORN D 　 　 0.103 0.088 　 0.109 0.092 
ACORN E (base) 　 　 　 0 0 　 0 0 　

　 　 　 　
Log L 　 　 　 -1382.0694 　 -4747.0581 　
Sample size is 2776 in all models.
Models 1b and 2b show heteroscadasticity-robust standard errors.
* Significant (p<0.05); ** Strongly significant (p<0.01)
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V  Econometric analyses of water consumption with panel data of households

This chapter turns our focus on panel data, which is a set of observations on many households repeated over a period 
of time.  Hence it simultaneously has characteristics of cross-sectional and time-series data.  The fundamental advantage 
of panel data analysis is that it allows us to estimate the partial effects of explanatory variables, after taking out the indi-
vidual (household) specific effects, or the heterogeneity.  This feature is particularly useful for us, because it is what we 
are aiming for in estimating the DEM.  We begin by discussing the modelling frameworks, which is followed by data 
descriptions and econometric analyses.

1  Modelling framework
a.  Three models
The basic framework for panel data analysis is a regression model of the form (Greene, 2008: 182):

�  (15)

where: yit is log of water consumption,
  xit is a k×1 vector of (observed) explanatory variables (not including a constant term), which consist of both 

household-specific variables (e.g. ACORN variables) and time-dependent variables (e.g. water consumption),
 β is a vector of parameters,
  z’iα is the household effect where zi contains a constant term and a set of household-specific variables that are 

unobserved,
	 εit is a disturbance term,
 and subscripts i (i=1,…,n) and t (t = 1,…,T ) indicate household and time, respectively.
First, if zi contains only a constant term (i.e. there would be no unobserved heterogeneity across households), the model 

(15) is reduced to:

� � (16)

And hence the OLS model gives consistent and efficient estimates.  This is called the pooled regression model.
Second, if unobserved household-effect variables in zi are correlated with xit, the OLS estimator is biased and inconsis-

tent because of the omitted variables in zi.  In this case, the following fixed-effects model gives consistent estimator:

� � (17)

where the heterogeneity across households is captured in differences in the constant term αi.
The advantage of this model is that it gives consistent (albeit inefficient at times) estimator whether zi is correlated or 

uncorrelated with xit.  On the other hand, the disadvantage is that we have to estimate β as well as αi on dummies for every 
household, which implies we need to sacrifice a large number of degree of freedom when the number of households is 
large.  This may render this model inefficient if we have another model that is also consistent.  Besides, since the effects 
of any time-invariant variables in xit would be absorbed in αi, we cannot estimate their effects on the dependent variable.

Third, if we could take stronger assumptions that the unobserved heterogeneity zi is uncorrelated with xit in any way, 
we can formulate the random-effects model:

� � (18)

where: ui expresses a household-specific disturbance, which is invariant in the time period.
Specifically, we assume the following about the disturbances:
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�  (19)

where:  σ2
u indicates the between variance, and σ2

ε the within variance.
The advantage of this model is that it reduces the number of estimated parameters (which are β and α only), and hence 

gives an efficient estimator in preference to the fixed-effects model, provided that zi (and hence ui) are uncorrelated with 
xit.  Moreover, effects of time-invariant variables in xit can now be estimated in the random-effects model.  On the other 
hand, the disadvantage is that it gives inconsistent estimator when ui is in fact correlated with xit.

b.  Criteria for model selection
Having introduced the three models for panel data, we need to have criteria for judging which model is favourable.  First, 

to find whether the fixed-effects model is preferred to the pooled regression model, we conduct the following F-test:

� H0: 

That is, there is no systematic difference in household dummies.
If H0 is true, then the pooled regression model gives the consistent and efficient estimator, and hence we prefer this to 

the fixed-effects model, which is inefficient.  By contrast, when H0 is rejected, the pooled regression estimator is incon-
sistent whilst the fixed-effects estimator is consistent.  Hence we prefer the fixed-effects model to the pooled regression 
model.

Thus, we conduct the F-test, where:
-   Unrestricted model is the fixed-effects model; and restricted model is the pooled regression model
-   Number of restrictions: n – 1
-    Degree of freedom for the unrestricted model: nT – n – k, where nT is the sample size, and n + k is the number of 

parameters in the fixed effect model (k is the number of parameters in β).
Hence we have the F ratio for the test:

�  (20)

where: R2
U is the coefficient of determination for the unrestricted model,

 R2
R is that for the restricted model.

Second, we turn to the criteria for choosing between the fixed-effects model and the random-effects model.  One of the 
tests for this purpose is the Hausman test (Greene, 2008: 209).  It sets the null hypothesis:

    H0: there is no correlation between the included variables xit and ui

-    If H0 is true, both the fixed-effects and random-effects models are consistent, but the former is inefficient.  Hence we 
prefer the latter to the former.

-    If H0 is false, the fixed-effects model is consistent but the random-effect model is inconsistent.  Hence we prefer the 
former to the latter.

   These in turn imply that, if H0 is true, there should be no systematic difference between the estimators of the two 
models.  This can be tested with the statistics:

� � (21)

which is asymptotically distributed as χ2(k) under H0
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where:    is the fixed effects estimator, and  is the random effects estimator.

2  Descriptions of data
The panel data is extracted from the same survey described in Chapter IV.  The data between January 1996 and May 

2001 were extracted and compiled as monthly water consumption data.  However, not all the sample households are sur-
veyed throughout this period, and hence the panel is unbalanced.  The sample contained a total of 595 households, which 
consists of 110 of the metered, 25 of the non-metered (both throughout the observation period), and 460 of the optant 
(those that switched from non-metered to metered status during the observation period22) (Table 8).

A comparison between mean consumptions of the non-metered (10,080) and the optant (before switching) (7,639) 
implies that there is indeed the self-selection issue (i.e. Proposition 1): the more water the household consumes when 
flat-charged, the less likely they switch to metering.  Another comparison between the mean consumption of the optant 
before switching (7,639) and that after switching (6,491) provisionally indicates that the optant households saved water 
by 15.0% on average upon switching.  (Both these two differences are significant at the 1% level23.)

Fig.13 shows the time path of monthly water consumption that is averaged over the whole households.  It implies a 
downward trend of consumption over time.  Hence we include the time-trend variable (ranging from “one” for January 
1996 to “65” for May 2001) in the explanatory variable.  It also reveals large seasonal fluctuations of consumption around 
the trend.  We therefore include the month dummies in the explanatory variable.

Table 8  Descriptive statistics of monthly water consumption

Household types Sample size Mean Std. deviation per day1)

Non-metered throughout  25 10,080 5,147 336 

Optant 460  7,043 3,681 235 

  of which (before switching)  7,639 3,881 255 

  of which (after switching)  6,491 3,547 216 

Metered throughout 110  6,698 4,016 223 

Whole sample 595  7,107 3,861 253 
Unit: litres per month
1) (mean monthly consumption) / 30

Fig.13  Time trend of mean monthly water consumption of households

22   This study specifically calls this group of households “optants”, although, in general, the term broadly means households that choose to switch to 
metering at any time period.

23  The t-statistics of the two comparisons (H0: no difference in means) are 3.00 (p=0.0028) and 4.69 (p=0.0000), respectively.
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A further investigation on time trends for each category of households (Fig.14) indicates that the downward trend is 
particularly obvious for the non-metered and the optant24.  Furthermore, the fitted line of the non-metered is far above 
those of the other two categories, which would again endorse the self-selection issue.  Another interesting feature is that 
seasonal fluctuations of the non-metered appear to be much wider than the other two.  This might be expected because 
the non-metered have less incentive to save water for “discretionary uses” such as watering gardens during the summer, 
which would push up their water consumptions during summer to very high levels, relative to the metered25.

3  Econometric models with panel data
a.  Models 4a and 5a: the fixed-effects and the random-effects models
Following our previous discussions, we now set to build two models: the fixed-effects model 4a (equation 17) and the 

random-effects model 5a (equation 18).  We omit the descriptions of the explanatory variables, as they are basically the 
same as those of the cross-sectional models in Chapter IV (Table 1).  The only new variables added here are: bedroom, 
which indicates the number of bedrooms a household possesses; and the time-trend and month-dummy variables that have 
been described in Section V-2.

The results of estimation are reported in Table 9.  According to the test statistics of the F-test (equation 20) and the 
Hausman test (equation 21), we reject H0 at the 1% level for both tests.  We therefore have strong evidences to prefer the 
fixed-effects model to the pooled regression model (F-test); and to prefer the fixed-effects model to the random-effects 
model (Hausman test).  Hence we conclude that we select the fixed-effects model in preference to the other two26.

Next, the coefficients of Model 4a are interpreted as follows:
-    Most importantly, the partial effect of meter is now estimated at 13.2% on average, which is significant at the 1% 

level, with a 95% confidence interval of 10.2－16.1%.  We may well recognise this as a consistent estimator of the 
DEM, as household-specific effects have now been taken out, as discussed in Section V-1.

Fig.14  Time trend of mean monthly water consumption of households of each category

24   In Fig.14, the fitted lines were drawn on data in a time period t<55, as the later period appears to deviate from the overall trend for unknown reason.
25   We should be mindful, however, that this observation might instead be attributed to the relatively small sample size of non-metered households (Table 

8).
26   Nevertheless, it should be noted that the “between” and “overall” R-squares of Model 4a are smaller than those of Model 5a.  Thus, in terms of 

the explaining power of the models, the random-effects model would be superior to the fixed-effect model, although the Hausman test suggests the 
former would be inconsistent.
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-    The coefficients on occupancy and occupancy-squared again imply a concave relationship between occupancy and 
water consumption27 as discussed in Section VI-2-a.

-    Negative sign of the time-trend coefficient implies that water consumption is declining over time at a rate of 0.34% 
per month on average.  It should be noted that this effect is observed after taking out the partial effect of metering, 
and hence indicates an underlying trend of decline in water consumption irrespective of water-meter installation.  
This might be expected because, for instance, a stock of accommodations in the region might undergo continual 
renovations in which water leaks within properties would be reduced, regardless of advancement of water metering.  

Table 9  Estimated fixed-effects and random-effects models for water consumption (1)

　 Model 4a (fixed-effects) Model 5a (random-effects)

Variables Coefficients Std. errors 　 Coefficients Std. errors 　
Constant 8.114428 0.0581325 ** 7.266677 0.0978068 **
Meter -0.1316871 0.0152048 ** -0.1462646 0.0148133 **
Occupancy 0.5290052 0.0458462 ** 0.6236188 0.0416748 **
Occupancy-squared -0.082321 0.0084821 ** -0.0921893 0.0077984 **
Bedroom 　 0.1591361 0.0273909 **
Dishwasher 　 0.1998858 0.0571471 **
Dual-flush toilet 　 -0.0138329 0.0612355
Wash vehicle 　 0.0457376 0.0222979 *
Hose 　 0.1586629 0.0475057 **
Sprinkler 　 0.17611 0.096847
Water softener 　 0.1681517 0.1101591
ACORN A 　 0.0473051 0.0740658
ACORN B 　 0.1920928 0.0803895 *
ACORN C 　 0.1534503 0.0839895
ACORN D 　 0.0900033 0.066017
ACORN E (base) 　 0 0
Time trend -0.0034304 0.0003028 ** -0.0030789 0.0002982 **
January (base) 0 0 　 0 0
February -0.0303234 0.019247 　 -0.0302155 0.0192712
March 0.0840946 0.019165 ** 0.0844717 0.0191885 **
April 0.0484122 0.0192883 * 0.0493768 0.0193103 *
May 0.0804886 0.0194318 ** 0.0811884 0.0194539 **
June 0.0552308 0.0193877 ** 0.0555583 0.0194088 **
July 0.1188382 0.019548 ** 0.119539 0.0195707 **
August 0.091189 0.0196208 ** 0.0918691 0.0196436 **
September -0.0064381 0.019615 　 -0.0059752 0.019638
October -0.0092221 0.0201182 　 -0.0082683 0.0201416
November -0.0190788 0.0207709 　 -0.0176264 0.0207948
December 0.01157 0.0204629 　 0.0118214 0.0204875
　 　
σu 0.60575869 　 0.48544146
σε 0.66995324 　 0.66995324
　 　
R2 (within) 0.0308 　 0.0305
R2 (between) 0.3853 　 0.4405
R2 (overall) 0.1846 　 0.2407
　 　
Sample size (obs) 27242 　 27242
Sample size (n) 595 　 595
Sample size (T; max) 65 　 65
F-test (p-value) 23.36 (0.0000) 　
Hausman test (p-value) 　 　 　 68.32 (0.0000) 　
Dependent variable: ln (water consumption)
* Significant (p<0.05); ** Strongly significant (p<0.01)

27  Likewise, bedroom in Model 5a, which may be closely related to occupancy, would have strongly positive effect on water consumption.
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It might also be attributed to the change in households’ tastes (such as widespread concerns for the environment).
-    The month dummies from March to August are significant, whilst the other ones are insignificant.  To depict the sea-

sonal variations more clearly, coefficients and 95% confidence intervals of the month dummies are shown in Fig.15.  
It reveals that water consumptions between March and August are distinctively higher than the other months, with a 
peak in July.  This would chiefly be attributed to greater water uses for showers and gardening in summer months.

b.  Models 4b and 5b: incorporating rateable values
In Section III-1-g, we theorised that there is an inverse relationship between the RV and the DEM (Proposition 3).  Yet 

in Section IV-2-d-(2), we argued that the RV is deemed to have no direct effect on water consumption.  Thus, one of the 
techniques to accommodate the RV in our current models is to include an interaction term, that is, (meter)/(RV), or morv 
for short, to express an indirect effect that the RV might have on water consumption.

   Hence Table 10 reports the estimated results on the same models as 4a and 5a, except that we now include morv in the 
explanatory variables.  We name these as Models 4b and 5b, respectively.  (As in Section V-3-a, Model 4b (fixed-effects) 
is preferred to both the pooled regression model and Model 5b (random-effects), according to the F-test and the Hausman 
test.)  The new variable morv turns out to be significant at the 1% level.  Hence, the DEM could now be estimated (in 
Model 4b) as:

  (22)

Thus, the inverse relationship between the two variables is indeed demonstrated.  A simulated relationship based on this 
estimate (Fig.16) suggests that the DEM is very large for households with lower RV, but decreases towards zero as the 
RV increases.  This might chiefly be attributed to different MRS for water across households (see Fig.7), which suggests 
wealthier households have less incentive to save water relative to poorer ones28.  It furthermore implies that installing 
water meters to wealthier households (with higher RV) would bring little benefits to society in terms of water savings, 
which is the main issue in Chapter VI.  Meanwhile, incorporating the RV in Model 4b enhances the explaining power of 
model, as it has higher “between” and “overall” R2 than Model 4a (Tables 9 and 10).

Fig. 15  Seasonal variations of water consumption
Note: Dots indicate the average; solid lines 95% confidence intervals.

28   It might alternatively be explained as follows: since wealthier households (with higher RV) had paid higher tariffs before switching, they would 
need less reduction in water consumption upon switching in order to save expenditure on water, relative to the poor (with lower RV).
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Table 10  Estimated fixed-effects and random-effects models for water consumption (2): with the rateable value

　 Model 4b (fixed-effects) Model 5b (random-effects)

Variables Coefficients Std. errors 　 Coefficients Std. errors 　
Constant 8.127029 0.0581837 ** 7.366932 0.0967039 **
Meter 0.0268924 0.0351975 　 0.035148 0.0329399
Meter/RV (morv) -27.93628 5.88713 ** -32.89997 5.510324 **
Occupancy 0.5015164 0.0458671 ** 0.5929481 0.0416176 **
Occupancy-squared -0.0772183 0.0084835 ** -0.0863215 0.0077807 **
Bedroom 　 0.1346948 0.0270522 **
Dishwasher 　 0.1903318 0.0556541 **
Dual-flush toilet 　 -0.0154021 0.0592827
Wash vehicle 　 0.0457915 0.0215909 *
Hose 　 0.1512335 0.0464058 **
Sprinkler 　 0.1681884 0.0937116
Water softener 　 0.1568604 0.1065951
ACORN A 　 0.0237185 0.0717766
ACORN B 　 0.176324 0.0782796 *
ACORN C 　 0.1831709 0.0818256 *
ACORN D 　 0.0866265 0.0640377
ACORN E (base) 　 0 0
Time trend -0.0034074 0.0003027 ** -0.0030095 0.0002981 **
January (base) 0 0 　 0 0
February -0.0302838 0.0192861 　 -0.0301203 0.0193191
March 0.0831841 0.0192033 ** 0.0835956 0.0192355 **
April 0.0476377 0.0193281 * 0.048651 0.0193587 *
May 0.0798707 0.0194642 ** 0.0807757 0.019495 **
June 0.0546062 0.0194211 ** 0.0550113 0.0194509 **
July 0.1193418 0.0195875 ** 0.1200046 0.019619 **
August 0.0893197 0.0196567 ** 0.0899642 0.0196883 **
September -0.0066699 0.0196554 　 -0.0062824 0.0196872
October -0.0045153 0.0201605 　 -0.0034349 0.0201929
November -0.0188756 0.020802 　 -0.0173153 0.020835
December 0.0114862 0.0204916 　 0.0120286 0.0205254
　 　
σu 0.58948799 　 0.46863903
σε 0.66840986 　 0.66840986
　 　
R2 (within) 0.0303 　 0.03
R2 (between) 0.4373 　 0.454
R2 (overall) 0.2116 　 0.2471
　 　
Sample size (obs) 27013 　 27013
Sample size (n) 585 　 585
Sample size (T; max) 65 　 65
F-test (p-value) 22.89 (0.0000) 　
Hausman test (p-value) 　 　 　 78.88 (0.0000) 　
Dependent variable: ln (water consumption)
* Significant (p<0.05); ** Strongly significant (p<0.01)

Fig.16  Simulated relationship between the rateable value and the DEM
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4  Summary
The fixed-effects model with panel data allowed us to estimate the partial effect of metering after taking out the house-

hold-specific effects.  Consequently, we successfully estimated the DEM as 13.2% on average, with a narrow 95% confi-
dence interval.  This is close to the recent estimate of 13% for England and Wales (Environment Agency, 2008a: 11), and 
within a range 5−23% of previous estimates for various parts of UK (summarised by Kyle (2009: 23)).

Nevertheless, further improvement of the model by incorporating an interaction term of meter and RV, revealed that 
the DEM would differ considerably across households.  Hence the average DEM mentioned above should be treated as a 
rough guide rather than the exact prediction.

VI  Social welfare of water metering

In previous chapters, we have found that wealthier households (with higher RV) are more likely to opt for metering, 
yet they would show up smaller DEM once a meter is installed.  This suggests socially inefficient outcome, because 
social benefits in terms of water savings would be small relative to the cost of installing meters.  The underlying cause 
of this “adverse selection” problem would be the current uniform metered charges: households pay the same volu-
metric (per-volume) charge irrespective to their DEM or latent propensity to switch to metering.  This implies that we 
might achieve socially more efficient outcome by differentiating metered charges across households (or introducing 
progressive pricing).  Thus, this chapter empirically seeks progressive charging schemes following a theoretical work 
of Cowan (2010).

1  Theoretical model
This section summarises the condition to achieve socially efficient outcomes when a water company knows house-

holds’ types29 regarding water consumption, after Cowan (2010: 803-807).  To begin with, the objective of a water com-
pany, being a public body, is to maximise social welfare by introducing meters.  Therefore, for every meter installed, they 
aim to attain larger social welfare relative to that before installation.

Hence we should have:

  (23)

where:  xm(t) and xf(t) are water consumptions of the metered and the non-metered, respectively, which depend on 
household’s type t,

 u(.) is household’s utility derived from water consumption, which depends on t,
 w is marginal cost of producing tap water,
 m is marginal cost of meter installation.

The left-hand side of equation (23) expresses social welfare after meter installation, whilst the right-hand side that before 
installation.

Equation (23) could be modified as:

or  (24)

The left-hand side of equation (24) expresses the social benefit of metering (with the third term indicating avoided produc-
tion costs through water saving), whilst the right-hand side the social cost of metering.

Meanwhile, the objective of a household is to maximise utility.  Hence the “participation constraint” of household to 

29  We will later attribute the “type” to the rateable value, which is a continuous variable.
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switch to metering is30:

 � (25)

where:   Tm(.) and Tf(.) are annual water tariffs31 levied on the metered and the non-metered, respectively, which depend 
on t.

The household’s decision to switch to metering achieves social efficiency if both equations (24) and (25) hold together.  
A sufficient condition to achieve this is:

or  (26)

We call Tm* the “first-best” metered tariff.  Equation (26) roughly implies that the larger the DEM of a household, or 
the smaller the non-metered tariff T f, the lower the metered charge for that household should be, since it incentivises them 
to switch to metering, thereby attaining more socially efficient outcomes.  The equation also implies that Tm* gives the wa-
ter company a financially neutral position with respect to metering costs (m) and benefits (w[DEM]).  In other words, Tm* 
should be higher than T f if the metering costs exceeds the benefits (avoided production costs), so that the water company 
could recover any financial loss from meter installation.

2  Empirical model
a.  Modelling framework
We now proceed to develop an empirical model for the above theory, to find a desirable metered charging scheme.  First 

of all, we assume that household’s type could be modelled by their rateable value.  This assumption is deemed simplistic, 
because households’ water consumptions and metering decisions could be influenced by a number of other factors, as 
we have discovered.  However, we should be mindful that we ought to select a household characteristic that is actually 
accessible to water companies to satisfy the “complete information” assumption in the theory.  Hence choosing rateable 
values would be sensible, as water companies indeed have such information when households are non-metered, and our 
main concern here is social welfare from the perspective of household’s income.

Next we empirically express equation (26) in terms of RV.  Throughout this chapter, we use the same cross-sectional da-
taset as Chapter IV.  We begin by estimating a relationship between the non-metered water consumption xf and the rateable 
value32.  The scattered diagram for them (Fig.17) is understandably dispersed due to the noises coming from unexplained 
factors, but we nevertheless detect a concave pattern from the Lowess smoother, which provides locally weighted scatter-
plot smoothing.  Hence we propose a quadratic function:

  (27)

According to the OLS estimation for the non-metered households only (Table 11), we have an estimate for equation (27):

   � (28)

It should be noted, however, that R2 of the regression is very low due to the unexplained factors that affect water consump-
tion.

30   This utility function is a simplified version compared to the one discussed in Chapter III.  In this case, latent propensity to switch to metering d* is 
expressed as:

　　　　　　  [from equation 25]
       Hence the propensity would be larger if: (1) T m (hence metered price p) is smaller; (2) T f is larger; or (3) xf is smaller.  Notice that (2) and (3) 

correspond to earlier Propositions 2 and 1, respectively.
31   We will use the word “tariff’ to express a total (lump-sum) bill that a household is payable in a year.
32   We have argued, however, that the RV cannot directly affect water consumption.  Here we are rather using the RV as a surrogate indicator for the 

income.
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Second, Chapter V has estimated a relationship between the RV and the DEM:

  (29)

The corresponding volumetric effect of metering33 is:

 � (30)

Inserting equation (28) into (30), we get:

� � (31)

The metered water consumption xm could be estimated as:

� � (32)

Inserting equations (28) and (31) into (32), we have:

� � (33)

Fig.17  Water consumption (non-metered) against the RV with Lowess smoother

Table 11  Estimated OLS model for water consumption

　
Model 6a

(Non-metered only)

Variables Coefficients Std. errors 　
Constant 49860.58 8065.317 **

Rateable value (RV) 290.3771 66.55822 **

Rateable value squared -0.1756794 0.1277138

　 　
Sample size 1873

R2 0.0557 　 　
Dependent variable: water consumption (L/year)
Heteroscadasticity-robust standard errors are shown.
* Significant (p<0.05); ** Strongly significant (p<0.01)

33   It should be noted that this estimate of demand reduction does not consider possible price effects on water demand.  However, we shall defer this 
argument to Chapter VII and Appendix II.



BULLETIN OF THE NATIONAL INSTITUTE FOR RURAL ENGINEERING   No.50   (2011)88

　Third, current water tariffs34 for the metered and the non-metered, levied by Anglian Water, are:

(Metered)  (34)

(Non-metered) ���� � (35)

where:  the constant terms indicate the standing charges that are levied irrespective of water uses or RV.
Fourth, we assume a constant returns-to-scale cost function for water:

 � (36)

where:  TC and FC are total and fixed costs for producing water, respectively, and
 w, the marginal cost of producing water, is assumed to be constant.

In this case, average variable cost is equivalent to marginal cost.  The total operating cost35 of Anglian Water in 2008-2009 
was £591.8 million/year (Anglian Water, 2009a: 48) whilst supplying 438 billion litres/year of water (Anglian Water, 
2009b).  Hence, marginal cost of water production is roughly estimated as:

 w = 591.8 (million £/year) / 438 (billion litre/year) = 1.351×10-3 (£/litre)� (37)

Fifth, the average incremental cost of installing and maintaining a water meter was estimated as 1.456×10-3 (£/litre) 
(Environment Agency, 2008b: 47).  Hence we have:

  � (38)

Finally, we have an empirical model for the “first-best” metered tariff (equation 26):

� � (39)

Thus, inserting equations (31), (35), (37) and (38) into (39), we have:

 � (40)

Assuming that the “standing charge” would remain the same as equation (34), we can deduce the “first-best” volumet-
ric charge p* that should raise the first-best tariff:

or � (41)

Thus, inserting equations (33) and (40) into (41), we have:

 � (42)

b.  Estimated results
Fig.18 shows predicted water consumptions for the non-metered before and after metering (from equations 28 and 33, 

respectively).  The gap between them indicates that the DEM is predicted to be larger for smaller-RV households than 
larger-RV ones.

34   This includes sewerage service charges for properties connected for foul water drainage only.  For more information, see: http://www.anglianwater.
co.uk/household/your-account/tariffs/standard-rates/  (accessed 1st July 2010).

35   The “operating cost”, according to the report of Anglian Water (2009a), may include both the fixed and variable costs.  Therefore, although we 
provisionally use this cost as an approximation to the total variable cost, we need more detailed information on cost structures for more precise 
analyses.
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Next, Fig.19 shows the current non-metered tariff T f that the households are actually paying (equation 35), and the me-
tered tariff T m that they will have to pay (after switching) under the current metered charges (equation 34), if they would 
consume water according to the prediction  (equation 33).  It suggests that, under the current tariff scheme, “typical” 
households, which consume the predicted amounts of water, could enjoy tariff savings at all RV ranges.

Fig.19 also shows the “first-best” tariff T m* (equation 40) that is expected to bring a socially efficient outcome.  It shows 
T f and T m* are virtually the same at the low end of RV, but the gap between them widens as the RV increases.  This implies 
the water company should impose higher tariff increases when higher-RV households switch to metering, because they 
would not show up enough benefits (i.e. DEM) for the water company to compensate metering costs.

Fig.20 then shows the estimated “first-best” volumetric charge  (equation 42) that should raise, on average, the first-
best tariff Tm*.  The curve of p* stays above the current charge at all ranges of RV, implying that the charge should be 
increased for all households if net metering costs are to be fully recovered.  Moreover, it follows a convex pattern with 
a turning point around 350 of RV.  The downward-sloping portion of p* in the lower range of RV is attributed to lower 
water consumptions of lower-RV households (which makes the denominator of equation (41) very small relative to the 
numerator).  Nevertheless, imposing higher volumetric charges on lower-RV households on such a ground would not be 
desirable as it effectively penalises their frugality in water consumption.

Therefore, we alternatively propose a “progressive” charge, which emulates the upward-sloping portion of p* with the 
OLS regression, and then extrapolate it into the lower range of RV.  Hence we conduct the OLS estimation of p* on RV, 
where RV is restricted to over 350 (Table 12).  Thus, we get the progressive volumetric charge ppr (Fig.20):

  (43)

Fig.18  Predicted and actual water consumptions for non-metered households

Fig.19  Estimated water tariffs against the RV for “typical” households (based on predicted water demands)
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We may then deduce the “progressive” tariff T mpr that would be collected, on average, under the progressive charge:

  (44)

Inserting equations (33) and (43) into (44), we get:

 
 (45)

Fig.19 shows the “progressive” tariff (equation 45) would reduce financial burdens especially for households in the 
lower range of RV, relative to the “first-best”.

In summary, although the progressive charge (equation 43) is deemed socially less efficient than the “first-best” charge 
(as it departs from the “first-best” solution of equation 42), it would be more desirable (relative to either the “first-best” 
or the current charge) in the following points:

-    The equation (43) is simpler than the first-best charge (equation 42).  This will make the progressive charge easier 
for customers to understand.

-    It encourages lower-RV households to switch to metering through reducing their tariffs, relative to the first-best.  This 
is important because they constitute a bulk of the remaining non-metered households (Fig.17), and hence switch-
ing them to metered status will generate a large magnitude of DEM, which is favourable from the environmental 
viewpoint.

-    It could encourage higher-RV households to save more water by imposing them progressively higher volumetric 
charges, compared to the current charge.

-    It would be justifiable, from the viewpoint of social equity, to subsidise lower-RV households for the metering costs 
in this way, whilst requiring higher-RV ones to pay back fully the net metering costs.

Table 12  Estimated OLS model for the progressive charge

　 Model 6b
(households with RV>350 only)　

Variables Coefficients Std. errors 　
Constant 0.4700092 0.0024944 **

Rateable value (RV) 0.0001638 0.00000553 **

　
Sample size 218

Adjusted R2 0.8019 　 　
Dependent variable: p* (the    “first-best” volumetric charge) (pence/L)
* Significant (p<0.05); ** Strongly significant (p<0.01)

Fig.20  Current and proposed metered volumetric charges against the RV
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-    In spite of the above, required amounts of such subsidies would be much smaller than the current tariff, as the pro-
gressive tariff is much closer to the first-best tariff (which is financially neutral) than the current tariff (Fig.19).

Having discussed “average” consequences of different charging schemes, we may now ask what the actual implications 
of those schemes are for each non-metered household.  We examine this by inserting actual water consumptions of the 
non-metered, xf, instead of the predicted ones, into equations (30) and (32), and calculating the tariffs accordingly.

The results are shown in Fig.21.  Under the current tariff (Fig.21(a)), the majority of households are able to save expen-
diture for water by switching (as most dots are below the solid line).  By contrast, under the first-best tariff (Fig.21(b)), 
the plots are more dispersed in an upward direction, implying the increasing financial burdens on households at all RV 
ranges.  In particular, those households consuming a lot of water are heavily penalised under this scheme.  The progres-
sive tariff (Fig.21(c)) then has an effect of “compressing” the dots downwards at the lower range of RV, lightening their 
financial burdens.

Fig.21  Estimated tariffs for “typical” and each household
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3  Summary
This chapter initially formulated the “first-best” tariff that would achieve a socially efficient outcome that was finan-

cially neutral as well.  Then, its adjusted version, or the “progressive” tariff, was proposed, which would reduce financial 
burdens of lower-RV households.

Although the analyses of this chapter have been focused on proposing an alternative metered tariff structure for enhanc-
ing social efficiency, the same objective might instead be achieved by adjusting the non-metered tariff, or both the metered 
and non-metered tariffs.  This is because the non-metered tariff is not exogenous but set by the same water company in 
conjunction with the metered tariff.  Investigation into this issue is left to future studies.

VII  Conclusion

This study is aimed at quantifying magnitudes of water saving that might be achieved through water metering (i.e. the 
demand effect of metering, or DEM), and appraising the relevant social welfare.  We focus our attention on situations in 
East Anglia region in England, where water supply is tightly regulated and water metering is largely optional.  Chapter 
III therefore begins by establishing a theoretical framework suitable to such situations, on the basis of microeconomic 
consumer theories.  Hence it is theoretically demonstrated that: the less water the household consumes when flat-charged, 
or the larger the rateable value of a household, the more likely they opt for water metering; there exists a positive DEM 
(in the absolute value term); and the larger the rateable value of a household, the smaller the DEM (given the household 
do switch to metering).

The above theory is duly tested in Chapters IV and V with econometric analyses using cross-sectional and panel data 
of households provided by Anglian Water.  The theory nonetheless suggests the endogeneity problem in estimating the 
DEM correctly: the metering dummy variable is deemed endogenous in estimating water consumption, thereby rendering 
the ordinary least square estimators inconsistent.  The analyses are therefore extended to treatment-effects and panel data 
models, which might overcome the problem.  Consequently, using the fixed-effects model with panel data, the DEM is 
successfully estimated as 13.2% on average with a narrow 95% confidence interval.  Moreover, an adjusted version of the 
model predicts more accurately an inverse relationship between the DEM and the rateable value, which is subsequently 
exploited in Chapter VI.

Chapter VI discusses social welfare of metering, which offers a policy implication: whereas the current tariff somehow 
subsidises the metering costs, the socially efficient outcome could be achieved by making the tariff financially neutral 
with respect to metering costs and benefits.  This would enable the water company to undertake alternative investments, 
for instance, in repairing more water pipes to reduce leakages (instead of subsidising metering costs).  Hence the “first-
best” tariff is formulated, which is financially neutral on average.  Nevertheless, it will put heavier financial burdens on 
most households through tariff increases.  Therefore, an alternative “progressive” tariff is proposed, which could ease fi-
nancial burdens for poorer households, yet is closer to the financially neutral position than the current tariff.  It is therefore 
advised that, when volumetric charges are to be increased in the future, the progressive charge would be considered.

On the other hand, the proposed tariff model warrants some qualifications, and hence suggests directions for future 
research.  First, we are actually far from the ideal “complete information” condition in respect to water demands, when 
the water company knows only rateable values.  For instance, the proposed tariff could levy disproportionately heavier 
burdens on households with higher occupancy – most typically with a lot of children.  However, such an issue could be 
dealt with by issuing them childcare subsidies.  We would rather insist that any tariff scheme should be sufficiently simple 
to administer, focusing on as little information as possible; the remaining social concerns could then be dealt with by 
other tax credits or subsidies.  This is partly because it will give a simpler charging scheme that is easier for customers to 
understand, and because the water company could save indirect costs of gathering necessary information.  Having said 
that, future research should seek for better household indicators than the rateable value for establishing socially efficient 
tariff schemes.

Second, we did not model the effect of price changes on the DEM.  Modelling it requires the price elasticity (as well as 
income elasticity) of demand for water.  The results of previous studies on this subject, mainly from USA and mainland 
Europe, have varied widely except that most studies indicated water demands were price inelastic (Arbués et al., 2003).  
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Although few studies have estimated the price elasticity in UK, Appendix II of this study envisages finding possible 
ramifications of price effects on demand by assuming a price elasticity of 0.35 after Dalhuisen et al. (2003).  Preliminary 
results obtained therein reinforce the earlier conclusion of this chapter: the progressive tariff would be socially more ef-
ficient than the current tariff.

Third, we did not include external environmental costs in the water production cost.  Nevertheless, such environmental 
costs are thought to become increasingly significant as water abstraction is approaching or possibly exceeding the envi-
ronmental capacity in East Anglia region (Environment Agency, 2008a: 15).  Thus, we may need substantial inputs from 
natural sciences to advance research in this direction, as environmental impacts of water abstractions (and subsequent 
discharges from sewage treatment works) could be very complex.

Appendix I:  Mathematical analyses for Chapter III

This appendix aims to provide mathematical solutions to the household’s decision problem discussed in Chapter III, 
using a parametric model and the constrained optimisation technique.  Most of the materials in Sections 1 and 2 are drawn 
from Kyle (2009).  We then extend the analyses in Section 3 to prove Proposition 3.

Most of the notations used in Section III-1 are carried over here.  So let:
 x1 be quantity of water consumed,
 x2 be quantity of numeraire consumed (with a price normalised as one),
 p be a price of water when meter-charged,
 f be a water charge when flat-charged on the basis of rateable values,
 m be an income of a household,
 c be a satiation point of water consumption,
 and
 Xm: (x1

m, x2
m) be the optimal consumption bundle when meter-charged,

 Xf : (x1
f, x2

f) be the optimal consumption bundle when flat-charged,
 Um(Xm) be the maximum utility obtainable when meter-charged,
 Uf (Xf) be the maximum utility obtainable when flat-charged,
 DEM be the demand effect of water metering.

1  Proof of Propositions 1 and 2
We assume that the household’s utility could be expressed as:

�  (46)

Function (46) satisfies the assumptions we made in Section III-1-a.
First, Xf has already been obtained by graphical analyses in Section III-1-c as:

  (47)

Hence, by equation (46), we have:

  (48)

Next, we turn to obtain Xm and Um using the constrained optimisation technique.  Since the slope of the budget constraint 
Bm is negative, it must have a tangency point with the indifference curve at the strictly convex segment (i.e. where x1<c).

Hence household’s objective is to:

 subject to (49)
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Hence we write the Lagrangean:

  (50)

The first-order necessary conditions for the maximum are:

� � (51)

� � (52)

� � (53)

From equation (52),

  (54)

Inserting equation (54) into (51),

� � (55)

Inserting equation (55) into (53),

� � (56)

Hence we have:

� � (57)

Inserting equation (57) into (46), we get:

� � (58)
We must have non-negative water consumption at the optimum x1

m, hence:

or� � (59)
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We have hypothesised in Section III-1-c that: the household will opt for metering if Um > Uf.  From equations (48) and 
(58), therefore, the household will opt for metering if:

or� � (60)

 subject to   [by equation 59]

Following equation (60), we may now think of another parameter d* that indicates latent propensity to opt for metering:

  (61)

The above discussions suggest that, when d* is positive, the household would opt for metering.
Partially differentiating equation (61), we have,

� �
(62)

� �
(63)

From equations (62) and (63), we could endorse our earlier propositions:
-    The smaller the c, the more likely the household opts for metering, holding f constant, and taking m and p as given. 

(Proposition 1)
-    The larger the f, the more likely the household opts for metering, holding c constant, and taking m and p as given. 

(Proposition 2)

2  Proof of the existence of the DEM
From the optimal water consumptions, we can derive the demand effect of metering as:

  [by equations 47 and 55]

� � (64)

Partially differentiating this with respect to p, we have:

� � (65)

Thus, this model also reveals the existence of a positive DEM (in the absolute value term) and a positive relationship 
between p and the DEM.  That is, the higher the p, the larger the DEM we could expect once the household switches to 
metering (subject to equation (59)).

3  Proof of Proposition 3
In deriving Proposition 3 (Section III-1-g), we assumed that the indifference curves get steeper as we move up the two-

good plane.  In our parametric model, this can be expressed as an increase in α when m gets larger, because larger α gives 
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steeper indifference curves (Fig.22).

Therefore, we may well model that: α increases in proportion to m, which in turn increases in proportion to f.  If we 
assume simple linear relationships among them, we have:

� � (66)

where:   g, h, and k (≡gh) are positive constants.
Thus, from equations (64) and (66), we have:

� �
(67)

This derivative is definitely negative, subject to p>α.  That is, the larger the f, the larger the α (i.e. the steeper the indif-
ference curve) (by equation 66), and hence the smaller the DEM (by equation 67).  (An example of simulated relation-
ships is given in Fig.23)  This endorses Proposition 3, subject to the given assumptions.

Appendix II:  Social welfare of water metering where the demand is dependent on water prices

Throughout Chapter VI, we assumed for simplicity that the demand effect of metering is constant regardless of volu-
metric water charges.  This appendix aims to generalise those discussions by allowing the demand to change in response 
to the price change, and explore ramifications on social welfare of water metering.

1  Modelling framework
In Chapter VI, we obtained the “first-best” (financially-neutral) tariff and hence volumetric charge (or price) for water, 

according to the sequences shown in Fig.24.  Those sequences were quite straightforward, since the water demand was 

Fig.22  Simulated indifference curves with different α
(Conditions: x1

f = c = 20; x2
f = m – f = 10)

Fig.23  Simulated relationship between α and the DEM
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assumed to be independent of price.  Thus, we obtained the “first-best” price:

  (41)

By contrast, we now allow the demand to depend on the price.  In this case, we may well hypothesise that the demand 
undergoes two-step reductions as shown in Fig.25.  The first step is the same as Chapter VI: the household is installed with 
a meter, and charged the current volumetric price.  For this step, we already have an empirical estimate of demand reduc-
tion, which is the DEM (equation 29).  Hence we get a predicted water demand if household is metered and charged the 
current price (equation 33).  Then, as the second step, the household faces a price increase from the current price to a new 
“socially-efficient” price to be obtained subsequently.  Accordingly, the demand will be further reduced in this step as:

(% reduction in demand) = (price elasticity of demand) × (% increase in price)
On the basis of this newly obtained demand, the “socially-efficient” tariff and hence the “socially-efficient” price36 

could be calculated as before.  Nevertheless, in contrast to Chapter VI, the demand (and hence the tariff) is now endog-
enous (i.e. dependent on price).  Such endogeneity is indicated by an upward pointing arrow on the right of Fig.25.

Thus, we can succinctly write a price equation as:

  (68)

This is a modified form of equation (41) above, expressing that the socially efficient tariff T m* and the water demand xm 
are now dependent on the socially efficient price p*.  This would make the derivation of the socially efficient price math-
ematically involved, since we now need to solve a nonlinear equation.  Therefore, we alternatively simplify arguments by 
taking for granted the “first-best” and “progressive” prices previously obtained in Chapter VI, as the first approximations 

Fig.24  Derivation of the “first-best” water tariff with no price effects on demand
Note: The numbers in square brackets indicate relevant equations.

Fig.25  Derivation of the socially-efficient water tariff with price effects on demand
Note: The numbers in square brackets indicate relevant equations.

36   We will not term these as the “first-best” to avoid confusion with those obtained in Chapter VI.
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towards the socially efficient solution implied by equation (68).  We then explore ramifications by considering relevant 
price effects on demand.  Such a modified approach is depicted in Fig.26.  Here the prices are given exogenously accord-
ing to the results of Chapter VI.

We now assume that the price elasticity of water demand would be 0.35, which is the median value of previous studies 
according to Dalhuisen et al. (2003: 295).  Thus, water demands under the new prices are estimated as:

  (69)

where: p is the new (i.e. “first-best” or “progressive”) prices,
 pc is the current volumetric price (before price increase),
 xm is the water demand under the new prices,
 xm

c  is the water demand under the current price,
 0.35 is the assumed price elasticity of demand.

Taking the above demand as given, we are now able to calculate two estimates for tariffs: the financially neutral (hence 
socially efficient) tariff, Tm* (equation 70), and the tariff that is collectable on average, T mcollectable (equation 71), as fol-
lows:

 � [from equation 39]
Inserting equations (32) and (38) into this:

� � (70)

  [from equation 41]� (71)

These two tariffs would be identical in a case of any possible solution to equation (68).  In other cases, however, there is 
a gap between the two, as we will see in the next section.  The larger the gap, the more subsidies the water company must 
spend on metering costs.  Hence smaller gaps would be more desirable from a viewpoint of social efficiency.

2  Estimated results
Fig.27 shows predicted water consumptions (demands) when we have price effects on demand.  As a benchmark, the 

first and second thin lines reproduce the previous predictions in Chapter VI (Fig.18) where we have no price effects.  
Then, the third and fourth thick lines show the reduced demands in response to the relevant price increases (equation 69).  
The demand reduction induced by imposing the “first-best” price of Chapter VI would be very severe especially for the 
lower-RV households, as their demands are reduced to near zero as a result of very high prices imposed on them (Fig.20).  

Fig.26  Simplified procedures for investigating price effects on demand
Note: The numbers in square brackets indicate relevant equations.
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This is clearly a socially undesirable situation, and hence we drop this case from the subsequent discussions.

On the other hand, when we alternatively impose the “progressive” price of Chapter VI, the demand reductions of 
lower-RV households due to the price increase (i.e. the gap between lines (2) and (4)) are kept minimal, whereas those 
of higher-RV households are considerable thanks to their initially larger water demands, and to the higher price increases 
imposed on them under the progressive charging (Fig.20)37.

Fig.28 then depicts estimated tariffs, where we have price effects on demand and the household faces a price increase 
from the current to the “progressive” price of Chapter VI.  As benchmark cases, the thin lines (1) to (3) reproduce the 
tariffs obtained in Chapter VI where we had no price effects.  To recap, the line (1) is a tariff for the non-metered under 
the current tariff schedule for them (equation 35); the line (2) is a metered tariff that is collectable on average under the 
current price (equation 34); and the line (3) is the socially efficient (financially neutral) tariff when we have no price effect 
– i.e. the “first-best” tariff of Chapter VI (equation 40).

Fig.27  Predicted water consumptions with or without price effects on demand

37   However, we should be mindful that their demand reductions due to price increases might actually be smaller, because we have argued that the 
water demand of wealthier households are more inelastic than that of poorer ones (see Fig.7).  But we will abstract from this fact here, and stick to 
the uniform price elasticity of 0.35 regardless of incomes.

Fig.28  Effects of a price increase (from the current to the “progressive”) on tariffs
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Next, the thick lines (4) and (5) indicate the two kinds of tariffs that are shown in the two lowermost boxes of Fig.26.  
The line (4) indicates the socially efficient (financially neutral) tariff when the demand is reduced in response to the price 
increase.  This line is slightly shifted downwards relative to the line (3), because the water company could now enjoy 
larger benefits from water savings (i.e. demand reductions).  This point is apparent in equation (70): the smaller the xm 
(demands after price increase), the lower the T m* (socially efficient tariff under such a condition) should be.

Meanwhile, the line (5) indicates a tariff that is collectable on average when the price is increased and the demand is 
reduced in response.  The line (5) shifts upwards in comparison to the line (2), which is our reference case.  According to 
the tariff equation (41), the reduction in demand reduces the tariff that a household is payable (i.e. the collectable tariff), 
whereas the increase in price increases the same.  Therefore, the upward shift of the line (5) suggests that the latter effect 
dominates the former for every household.  Nonetheless, such a shift is kept minimal for the lower-RV households.  Thus, 
in comparison to the reference case, the progressive tariff would contribute to augmenting a revenue base of the water 
company, whilst circumventing too much financial burdens on poorer households.

Having observed the effects of price increase, the key issue here is the gap between the socially efficient (financially 
neutral) tariff and the collectable tariff: the narrower the gap, the more socially efficient the relevant charging scheme 
would be.  To begin with, our reference case is the current price.  Under this price, we do not have to consider the price 
effect (but the DEM only).  Hence, the socially efficient tariff is the line (3), whilst the collectable tariff is the line (2).  
On the other hand, after the price increase, the socially efficient tariff is the line (4), whilst the collectable tariff is the line 
(5), as we have discussed.

From Fig.28, it is obvious that the gap between the lines (4) and (5) is generally narrower than that between the lines 
(3) and (2).  We could therefore claim that the “progressive” tariff is closer to the socially efficient position than the cur-
rent tariff.  Thus, we may have found a further justification to recommend the “progressive” tariff in favour of the current 
tariff, from a viewpoint of social efficiency.
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英国イースト・アングリア地域における水道メーターの導入と
水需要・社会福祉

上田達己，MOFFATT Peter

要　旨

近年英国では，将来の水資源の逼迫への懸念から，水
需要を節減させる効果をもつ水道メーターの設置（すな
わち従量式の水道料金制度の導入）が推進されている。
本論文は，英国東部のイースト・アングリア地域を事例
として，水道メーターの導入が，一般家庭の水需要およ
び社会福祉に与える影響を明らかにすることを目的とす
る。
第 1・2章は，研究の背景・目的を述べるとともに，
既往研究のレビューに基づき研究課題を特定する。
第 3章は，ミクロ消費者理論にもとづいて，水道メー
ターの導入と家庭の水需要の関係性を理論的に考察す
る。前提条件として，当該地域の現況に基づき，当初各
家庭は固定料金（各家庭の不動産価格に比例した料金）
を支払っており，水道メーターの設置（従量料金制度へ
の乗換え）は任意であるとする。これら前提のもと，以
下の 3つの命題が理論的に導かれる。①ある家庭の水需
要の飽和点（固定料金下（水の限界費用がゼロの時）の水
需要量）が小さければ小さいほど，その家庭は，従量料
金制度に乗り換えるインセンティブが高い。②ある家庭
の不動産価格が高ければ高いほど，その家庭は，従量料
金制度に乗り換えるインセンティブが高い。③ある家
庭の不動産価格が高ければ高いほど，その家庭が示す
DEM（Demand Effect of Metering：水道メーター導入のも
たらす水需要削減効果）は小さい。
第 4章は，当該地域の主要な水供給公社である An-

glian Waterの提供する交差系列データを用いた多重回帰
分析等を行い，前章の命題を計量経済学的に実証する。
ところが，命題①により，交差系列データを用いた多重
回帰モデルにおいては，推定された DEMに偏りがある
ことが示唆される（内部性の問題）。実際，メーター設置
ダミー変数を内生変数とした同時方程式モデルによる検
討から，多重回帰モデルは DEMを過大評価する傾向が
あることが明らかとなる。
そこで，第 5章は，パネル（交差時系列）データを用い
た回帰分析を行い，内部性の問題を解決する。結果とし
て，平均 13%のDEMが観察される。（すなわち，水道メー

ターの設置は，家庭の水需要を平均 13%減少させるこ
とが推定される。）さらに，メーター設置ダミー変数と不
動産価格の比を説明変数に加えることによって，家庭の
不動産価格と DEMの間の反比例の関係（命題③）を実証
する。
第 6章は，厚生経済学理論に基づき，社会的にみて効
率的な料金制度のあり方を論じる。前提条件として，水
供給側が各世帯の水需要関数を把握しているとし（完全
情報の仮定），ここでは，前章で実証した命題③を援用
する。結果として，社会的にみて効率的な料金は，水道
メーター設置の純費用（＝粗費用－設置の社会的便益）
を，従量料金の値上げによって補填するような（予算中
立的な）料金体系であることが理論的に推察される。こ
こで，メーター設置の社会的便益は，DEMによる水供
給費用の節減であると把握される。したがって，命題③
により，高所得の（高い不動産価格の住宅を持つ）世帯ほ
ど，メーター設置の社会的便益（DEM）が小さい（すなわ
ち設置の純費用が大きい）ので，そのような世帯に対し
ては，従量料金を高く設定することが望ましいと推論さ
れる。さらに，前章までの実証分析結果に基づき，その
ような特性をもつ累進的な従量料金制度を具体的に提案
する。
第 7章は，研究の総括を行うとともに，今後の研究の
方向について論じる。
本論文の成果は，水道料金のみならず，農業用水等の
料金制度と水需要を考察するうえでも有用な情報を提供
する。とりわけ，以下のような事例（条件下）に適用する
ことが最も有用であると考えられる。①水需給が逼迫し
ており，水需要の削減が大きな社会的便益を生み出すこ
と。②従量料金制度への乗換えが任意であること。③水
需要削減のインセンティブが各々の需要者によって異な
り，その差異を水供給側が定量的に把握できること。

キーワード： 上水道，水道メーター，水需要，計量経済
学，社会福祉




