

Reduction of Greenhouse Gas Emissions from Livestock Manure Management by Feeding Low-Protein Diet

Akifumi Ogino, Takashi Osada

Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization

Treatment of livestock waste in Japan (N flow)

Concept

Conventional

Manure N

 N_2O

management

Improved

Reduced protein in diet

Reduced manure nitrogen

Manure management

Reduced N₂O?

Amino-acid sufficiency of conventional and low-protein diets for requirements of fattening pig

Values of amino-acid requirements are expressed as 100%

Low-protein diet with amino acid for swine

Nitrogen balance of fattening pig (g N /day)

Red: conventional diet Blue: low-protein diet supplemented with amino acids

Development of technique feeding low-protein diet

Quantification of N₂O reduction from manure management

zation

Amino acids Bypass protein

Formulation of lowprotein diet supplemented with amino acids etc. and its feeding

Verifying stable productivity

Verifying reduction of nitrogen excretion

Method: feeding study

- 5 LWD barrows with average body weight of 32.7kg
- ad libitum feeding in individual cages
- CP17.1% for control diet (CONT), CP14.6% for lowprotein diet (LOW) supplemented with amino acids (Lys, Thr, Met, Trp)
- Twice, 10 days per each
- Daily gain (weight), feed intake, feed efficiency (gain/feed), nitrogen balance, and BUN were measured

CP, crude protein; BUN, blood urinary nitrogen

Composition of diet, %

	CONT	LOW	
СР	(17. 1)	(14. 5)	
Corn	61. 90	69. 05	
Soybean meal	25. 50	18. 00	
Brown rice	10.00	10.00	
Tricalcium phosphate	1. 60	1. 60	
Salt	0. 30	0. 30	
Vitamine, mineral	0. 60	0. 60	
L-Lysine, HCI	_	0. 21	
L-Threonine	_	0.06	
DL-Methionine	_	0.06	
L-Tryptophan	_	0. 02	
Chromic oxide	0. 10	0. 10	
Total	100.00	100.00	

Nitrogen balance per kg-feed

Average ± SE (n=5), *P<0.05, **P<0.01

Methods: composting study

NARO

nd Food Research Organization

● 5kg feces mixed with sawdust per each treatment (65% of MC) was composted for 5 weeks (twice)

- Composting materials were aerated (0.6L/min) and weekly mixed for aerobic fermentation.
- Exhaust gases were carried to gas monitor and gas concentrations were measured.
- Composting was finished based on temperature change and BOD of composting materials.

Methods: wastewater treatment study

- ●Urine and 20% of feces from CONT and LOW were treated using experimental activated sludge apparatuses (3L of effective volume) for 6 weeks.
- Wastewater was applied at hydraulic retention time (HRT) of 5d.
- Wastewater contained2400mg/L BOD and 370mg/L N
- Aeration for 22 hr/d at a rate of 0.5L/min

Experimental activated sludge apparatus

Changes in ORP and temperature in the reactor during experiment.

Results of composting study (1st trial)

Changes in temperature and GHG emissions

● Total N₂O emissions during the study were 0.28 g for LOW and 0.21g for CONT, and emission factors were 0.43% for LOW and 0.38% for CONT (gN₂O-N/gN).

■ Total CH₄ emissions during the study were 0.35g for LOW and 0.40g for CONT, and emission factors were 0.023% for LOW and 0.030 % for CONT (gCH₄/g-OM).

Results of composting study (two trials)

National Agriculture and Food Research Organization

NH₃ and N₂O emissions differed between trials (summer and autumn), rather than between LOW and CONT.

70-76% of the initial nitrogen remained in finished compost.

NH₃-N emission accounted for 15~22% of the initial nitrogen and is high in summer. N₂O-N emission accounted for 0.45-0.60% of the initial nitrogen and is high in summer.

Results of wastewater treatment study

Changes in CH₄ and N₂O emissions (ppm) from wastewater treatment study for LOW and CONT.

- Wastewater treatment was well done (99% of BOD removal and 60% of nitrogen removal)
- ●CH₄ and N₂O emissions were not largely different between LOW and CONT.

Results of wastewater treatment study (cont'd)

NH₃ and N₂O emissions differed between trials (summer and autumn), not between LOW and CONT.

Approximately 10% of the initial nitrogen existed in sludge (mainly in microbes). NH₃-N emission accounted for less than 0.1% of the initial nitrogen. N₂O-N emission accounted for 0.97-2.45% of the initial nitrogen.

No impact on animal growth,

Surely reduce GHG

J-VER

オフセット・クレジット(J-VER)制度

| HOME | 免責事項 | お問い合わせ | ENGLISH(PDE)

STUB MENT

新着情報·NEWS

¥ J-VER制度とは

制度文書一覧

当 方法論

≥ 様式一覧

■ 妥当性確認・検証機関

¥ スケジュール

≥ プロジェクト一覧

検討会・委員会

■ J-VER登録簿

M FAQ

M リンク集

≥ お問い合わせ

都道府県J-VER プログラム認証 についてはこちら >>>

カーボン・オフセット 認証制度 についてはこちら >>>>

カーボン・ニュートラル 認証制度 についてはごちら >>>>

J-VER推進協議会からのお知らせ

東日本

中·西日本

新着情報·NEWS

more

◎ 2011年10月27日

→ オフセット・クレジット(J-VER)制度における温室効果ガス(GHG)妥当性確認・検証機関の暫定的な登録要件に基づき、「オフセット・クレジット(J-VER)制度における暫定的な妥当性確認・検証機関リスト」が更新されました。

◎ 2011年10月25日

森林認証に基づくオフセット・クレジット(J-VER)プロジェクト受理が終了しました。それに伴い方法論 PR001及び RR002における、適格性基準2及び3の森林認証に係る記述が修正されました。

◎ 2011年10月21日

東日本大震災の復興プロセスの中で、オフセット・クレジット(J-VER)制度の取組が担うべき役割を鑑み、下記方法論において特例措置(方法論末尾「付属書A」参照)を設定することとなりました。 P E001, P E002, P E003, P E007, P E025

◎ 2011年10月20日

→ 現在の電力需給状況にかんがみ、本年4月22日に定めた「東日本大震災を踏まえたオフセット・クレジット(J-VER)制度の暫定的な運用について」による取扱いを終了することとしました。

◎ 2011年9月7日

お問い合わせを更新しました。

文字サイズ: 小中大

カーボン・オフセットフォーラム j-cof.go.jp

新メカニズム 情報ブラットフォーム The low-protein diet technique for swine has been adopted in the carbon offset credit scheme in Japan named Japan Verified Emission Reduction (J-VER).

Low-protein diet for layer

Low-protein diet for cattle

Cattle has rumen

All kinds of amino acid are synthesized by rumen microbes; however, they are not synthesized in response to requirements of each amino acid.

Possible reduction of nitrogen excretion by feeding lowprotein diet supplemented with **bypass protein** or **rumen-protected amino acids**.

Most portions of bypass protein and rumen-protected amino acids are undegradable and unusable by rumen microbes.

Feeding study and waste treatment study

National Agriculture and Food Research Organization

Conventional (CONT) and low-protein-diet (LOW) pig production systems evaluated using life cycle assessment (LCA)

Summary

- Feeding of low-protein diet supplemented with amino acids reduces GHG emissions from swine manure management by approximately 40%.
- Technique of feeding low-protein diet supplemented with amino acids or bypass protein to cattle and poultry is being developed.
- GHG reduction by using low-protein diet for swine is being evaluated from life cycle perspective, and potential of GHG reduction in Japan by developing mitigation techniques will be evaluated.

鶏ふん乾燥・堆肥化中の温室

Noticed Assignations and Food Recognition

National Agriculture and Food Research Organization

2反復(20羽分) を混合(3区2反復)

測定の流れ

生ふん

水分75%程度

半乾燥ふん

水分55%程度

堆肥

水分40%程度

小型堆肥化装置「かぐや姫」にて堆肥化

マルチガスモニタにて測定 (INNOVA 1412)

堆肥化試験 (計測と計算)

堆肥化試験 (操作と期間)

小型試験装置を用いて5週間の試験期間

概ね、5kgのふん尿・資材混合物を堆肥化。 有機物1500g、窒素は70g程度が含有

堆肥化装置下部からの定量通気(0.6L/min) を行い、週に1度の詰め替え(切返し)を行 い好気的な堆肥化を進行

切返し直後の温度上昇、充填物BODを指標 に堆肥化終了

(GHGの発生が、5週間後には顕著でないことも確認済み)

小型堆肥化試験装置

堆肥化試験中の温度変化の事例

Results on composting, NH3 etc

初回秋季試験 基礎データ (差異は認めず)

堆肥の品温上昇は緩慢で、2週目の切り返し後に最高温度に達した。両試験区で大きな差異はない。3週目の切り返し以降品温上昇は顕著で無く、5週目で堆肥化を終了。

本試験から得られたデータから 期間中総発生量を算定する と、アンモニアの排出は凝縮水 を含めて、AA区 10.4 g、Cont 区 8.57gであり、発生係数は 15.7%,15.9%(gNH3-N/g充填物 窒素)と差異がなかった。

- ▶ Feeding a diet with 14.1% CP in which bypass soymeal was substituted for soymeal reduced nitrogen excretion from mid-lactation cows by approximately 10%.
- Supplementation of diets with methionine to early-lactation cows increased milk production and milk protein content significantly for low-protein diet, and feeding a low-protein diet had a lower nitrogen excretion.