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1. Introduction 

 

Agriculture, Forest and Other Land Use (AFOLU) sector contributes about a quarter of global greenhouse gas 

(GHG) emission [1] though its contribution is small in Japan [2]. In addition, technologies to reduce GHGs from 

agriculture sector are not expensive [3]. It is therefore worth reducing GHGs from this sector. It includes soil carbon 

(C) sequestration and mitigation of methane (CH4) and Nitrous oxide (N2O) emissions. 

 

2. Soil Carbon Sequestration 
 

Increasing soil C means decreasing 

atmospheric CO2 in cropland because 

C is cycling among three pools in 

cropland and “biomass” C pool can be 

considered as constant in longer term 

(Fig. 1). This is not the case in forest 

where biomass pool increases with 

tree growth in long-term. Soil C 

sequestration is a strategy to achieve 

food security through improvement in 

soil quality in cropland [4]. It is 

therefore considered as a win-win situation: climate change mitigation and sustainable agricultural production. Soil 

management such as manuring, cover crop, no- or reduced- tillage etc. is effective for increasing soil C [1, 2, 4].  

Long term datasets of field observation are valuable because changes in soil C are generally slow and difficult to 

detect it in short term. Importance of long-term field experiments [5] should be highlighted more. On the other hand, 

modelling approach is effective for future projection and/or wider area evaluation on the effect of changing 

agricultural management and/or changing climate. A number of soil organic matter (SOM) models have been 

published [6]. Among them, the RothC [7], CENTURY [8] and DNDC [9] have been widely used, but the use of 

these models was limited in Asia. They have been mainly developed and applied in European countries and the U.S. 

The RothC, which was developed in the U. K., was recently tested in Japan [10, 11, 12], China [13] and Thailand 

[14]. The country-scale calculation system using this model [15, 16] was developed in Japan, which uses three 

different versions of the modified RothC: normal version [7], Andosols version [11] and paddy soils version [12]. It 

was adopted in National Greenhouse Gas Inventory Report (NIR) of Japan [2] from 2015. 

 

3. CH4 and N2O 

 

CH4 is produced in paddy field where soils are submerged during rice cropping period and soils are reduced. 

Water management and/or organic matter management is important for its mitigation. Potential of mitigation of CH4 

was estimated at global scale [17]. On the other hand, for example, extending period of mid-season drainage was 

found to be effective for reducing CH4 emission [18] and it is expected to be widely spread because it is cheap and 

easy. Modelling approach is progressed for CH4, too. DNDC-Rice model [19] was developed and it was applied for 

country-scale simulation [20], too. 

N2O is produced from nitrogen in soil which derived from chemical and organic fertilizers. It is therefore 

important that reduction in N application rate is a basic option to reduce N2O emission. Appropriate application rate 

of N fertilizer and organic matter is therefore effective. On the other hand, a change in fertilizer type such as 

nitrification inhibitor was found to be effective for its mitigation, too [21]. 
 

Fig. 1. Carbon cycling around cropland 



 

 

4. Mitigation of total GWP: Life Cycle Inventory Analysis 
 

Although it is basically “win-win” 

situation between sustainable 

agricultural production and soil C 

sequestration, it is easy to imagine 

the trade-off between CO2 mitigation 

by soil C sequestration and increase 

in other GHGs (CH4 and/or N2O) 

emission caused by increasing 

organic matter input to soils. It is 

therefore important to evaluate these 

three GHGs totally by using GWP 

(Global Warming Potential) of each 

gas.  Fossil fuel consumption 

derived from agricultural machinery, 

plastic film, fertilizer, pesticide etc. 

should be included, too. There are 

still only a few examples [22, 23] of 

the study on life cycle inventory 

analysis on GHGs in agriculture in 

Japan.  

A web-based decision support tool 

“Visualization of GHGs from soil” (Fig. 2) was published where user can easily calculate changes in soil C, CH4 and 

N2O emission, and fossil fuel consumption. This tool is expected to be used by farmers to make their products more 

valuable such like “environmental friendly products”. 

 

5. Conclusions 

 
Soil C sequestration is basically win-win relationship with sustainable soil fertility maintenance. There are a lot of 

valuable long-term experiments on going and it is important to continue them. Modelling approach has been 

progressed based on such field observation. As to CH4 and N2O, mechanisms of emission and mitigation options 

have been understood to some extent, and modelling studies progressed, too, but the basic process study is still 

necessary.  Collaboration between model and monitoring studies will be a key in this research field. The mitigation 

of total GWP is important for GHGs. Total evaluation of GHGs with life cycle CO2 inventory analysis is therefore 

necessary. “Visualization” of GHG emission by web- based application is useful tool for supporting farmers’ 

decision on soil management to achieve sustainable food production and environmental friendly agriculture.  
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