

Enriching Soil, Enhancing Life

MEASURING AND ASSESSING SOIL HEALTH ACROSS NORTH AMERICA

Cristine Morgan, PhD

Chief Scientific Officer

The 2024 SHI Team

Mission: safeguard and enhance the vitality and productivity of soil through scientific research and advancement

What is Soil Health?

Measure soil health to develop locally relevant resources for land managers & quantify impacts of soil health management systems

By Sandra Evangelista, Univ. of Sydney

What are soil functions?

- Water infiltration and retention
- Filtering pollutants
- Decomposition of organic matter
- Carbon storage
- Nutrient cycling
- And more

What affects soil function?

Soil Forming Factors

Jason Ackerson

https://www.soils.org/ media-gallery/view/85

Soil Management

Soil Health Expression

Runoff collected on fields managed with different practices. Left to right = increasing levels of soil health management systems

100

farms assessed in states where 71% of the corn and 67% of the soybeans are grown in the U.S.

BACKGROUND AND SUMMARY OF FINDINGS ACROSS ALL 100 FARMS

reported increased crop resilience to extreme weather

Net income increased for 85% of farmers growing corn and 88% of farmers growing soybean

reported a higher yield than their conventional system

Reduced the average cost to grow corn by \$24/acre and soybean by \$17/acre

Increased net farm income by an average of \$52/acre for corn and \$45/acre for soybean

https://soilhealthinstitute.org/economics/

97%

Partial Budget Analyses for over 170 farms

	Wheat	
	Benefits	Costs
Expense Category	Reduced Expense	Additional Expense
Seed	0.00	7.05
Fertilizer & Amendments	6.43	0.00
Pesticides	1.26	3.12
Fuel & Electricity	4.58	1.69
Labor & Services	9.63	4.93
Post-harvest Expenses	0.00	0.22
Equipment Ownership	18.91	9.22
Total Expense Change	40.81	26.23
	Additional Revenue	Reduced Revenue
Yield, bu./acre	0.80	0.00
Price Received², \$/lb.	5.50	5.50
Revenue Change	4.40	0.00
	Total Benefits	Total Costs
Total Change	45.21	26.23
Change in Net Farm Income	18.98	

Partial budget analysis of adopting a soil health management system

Average Improvement in Net Farm Income

- 100 corn and soybean farms USD 50/ac JPY 2,990/ha
- 30 Soil Health Champions USD 65/ac JPY 3,880/ha
- 26 Cotton Farmers US 100/ac JPY 5,971/ha
- 18 Small Grains Farmers USD 19/ac JPY 60/ha

Mills

Mean change in net farm across many crops including grazing \$55/acre

North American Project to Evaluate Soil Health Measurements

- Identify most effective indicators of soil health
- 124 long term experimental sites
 - Paired treatments- tillage, cover crops, crop rotations
 - 0-15 cm depth
- Over 30 current & exploratory soil health measurements

NAPESHM Measurements

Minimum Suite of Effective Indicators for North America

Accessibility of measurement:

Slakes Smart Phone App:

Wet Aggregate Stability

A minimum suite of soil health indicators for North American agriculture

<u>Dianna K. Bagnall</u>¹ *P* ⊠, <u>Elizabeth L. Rieke</u>¹, <u>Cristine L.S. Morgan</u>, <u>Daniel L. Liptzin</u>, <u>Shannon B. Cappellazzi</u>, <u>C. Wayne Honeycutt</u>

1. Soil Organic Carbon Concentration

Selected Soil Health Indicators

- **2. Carbon Mineralization Potential**
- 3. Aggregate Stability via Slaking Image Analysis

4. Predicted Available Water Holding Capacity

Bagnall, D.K., Morgan, C.L.S., Cope, M., ... Honeycutt, C.W., 2022. Carbon sensitive pedotransfer functions for plant available water. Soil Sci. Soc. Am. J. https://doi.org/10.1002/saj2.20395

Continental Soil Health Assessment

SOIL HE

Management Systems

14

Soil health sampling groups for the conterminous US

Benchmarking Soil Health

SOIL HEALTH BENCHMARKS

An interpretable, scalable, locally relevant method for evaluating and monitoring soil health. Targets are set by farmers and their advisors for individualized goals.

Regional Interpretation of Management Effects

WI - Driftless

Regional Effects of Management

Progress Achieved at the Regional Scale (Georgia)

Sampling Locations **Tillage Intensity** Higher Lower Cropland Benchmark

Soil Organic Carbon

Increasing Relative Soil Health

Farmer-Facing Reporting

Summary

- ✓ Soil health management systems can help our most productive soils become more profitable
- We can measure and monitor soil health affordably (3 accessible measurements)
- Achievable soil health varies by soil type, climate, and cropping system
- Reporting to individual farmer is different than reporting to other stakeholders (policy, consumer product groups, commoditization)
- ✓ If you treasure it measure it

CMORGAN@SOILHEALTHINSTITUTE.ORG