

Regenerating Soil Health in Smallholder Systems of South Asia: Challenges and Strategies

00000

ML Jat | Director, Global Research Program on RFFS, ICRISAT | mangilal.jat@icrisat.org | www.icrisat.org

Smallholder Systems in South Asia has Unparallel Challenges

- A global 'hotspots' for contemporary and future climate vulnerability
- Natural resources (land, water, biodiversity) are highly stressed
- Emerging biotic stresses
- Smallholder's dominance: smallholder farmers feed the majority of population
- Relationship of dominance of smallholders, drylands, land degradation and malnutrition

Percentage of children under 5 who are stunted (%), by country, 2018

Note: Country Data are the most recent available estimate between 2012 and 2018; exceptions where older data (2000-2011) are shown are d with an asterisk (*) and where only data prior to 2000 are available the dark grey color denoting no recent data is used.

Source: EAT-Lancet Commission Report, (2019), UNICEF, 2019

Global distribution of cropping and grazing and SOC change in the top 2 m

Land Use: Distribution of crop and grazing land

SOC: Gain (-) and Loss (+): Mg C ha⁻¹

Historic Trend in Cropland, Grazing Land & SOC Loss

- 133-Gt soil carbon deficit that has accrued over time
- beginning about 20 y ago, proposals for repaying this carbon debt, through regenerative farming practices, began to emerge as a climate mitigation strategy (*Ronald Amundson, 2022, PNAS*)

Soil Organic Carbon - Asia

- Top-soil (0-30 cm) store 248 petagrams of carbon
- Potential to sequester additional 180 metric T of C/yr (thru high C-input sustainable soil management practices)
 Source: Soil Carb

Source: Soil Carbon Map (FAO, 2022)

°. J

Soil Health Monitoring: ICRISAT's Work in India

ICRISAT generated soil data (*n* =106845) displaying % of soil samples (India) showing different deficiencies of SOC, P, S, Zn, B

VICRISAT

Source: Derived from soil health management projects, ICRISAT 2004-2021

Stressors to Peace Caused by Soil Degradation and Global Warming

ŝ

Ways to Regenerate: RA

Regenerative agriculture (RA) is a prominent alternative seeking to transform food production and repair ecosystems. The farming practices and approaches that-

- Uses <u>soil conservation as the</u> <u>entry point</u> to regenerate and contribute to multiple provisioning, regulating and supporting ecosystem services
- <u>Enhance</u> not only the <u>environmental</u>, but also the <u>social</u> and <u>economic</u> dimensions of sustainable food production

。 冗

Tangible Benefits of Conservation/Regenerative Agriculture

Source: Jat et al (2020), Nature Sustainability, Jat et al (2023)

Conservation Agriculture Impacts on Soil Organic Carbon in South Asia

°. L

ŝ

VICRISAT

Source: Jat et al (2023), Advances in Agronomy

Changes in SOC lability, lability index (LI), carbon pool index (CPI) and carbon management index (CMI) under long-term CA in RWCS

ICRISAT

Source: Dey, Dwivedi, ----Jat et al (2023)

°. S

ŝ

Challenges Associated with SOC Sequestration

- Retention of C in a soil is not unlimited (C saturation)
- Carbon storage in soil is not permanent (Nonpermanence)
- Socio-economic constraints

Source: Jat et al (2022)

SOC sequestration Practices	Adoption constraint	Major reasons for mismanagement (trade-offs)	Implications or risk of mismanagement	
No open grazing	Lack of dedicated pastureland for grazing, shortage of fodder, poor economic conditions of farmers especially landless livestock farmers	Excessive uncontrolled grazing, community/social structure, lack of regulations	Results in bare fallow and soil surface exposure to wind and water erosion and loss of SOC	
Scientific land use plans and sustainable soil management	Ineffective policies	Good quality soils used for other purposes such as brick making, urbanization	Loss of soil and SOC, virgin/forest soils are put under agricultural use	
Zero or reduced tillage	Lack of knowledge and machinery, conventional tillage-based mindset legacy and misconceptions, lack of locally adapted packages	Conventional/intensive tillage (CT)-based mindset, lack of incentives for eco-system services	CT results in loss of SOC and GHG emissions	
Crop residue retention/ recycling	Other economic usages of crop residue such as fodder, fuel and fencing/no cheaper and easy options of burning, lack of knowledge and capacity	Residue removed or burned	Wrong use of crop residue and burning results in loss of C and GHG emissions	
Application of biochar	Technology constraint, economic constraints	Biochar application is not a common practice	Increase in GHG emissions, risk of respiratory diseases, toxicity	
Balanced use of nutrients including organic amendment	Knowledge gap, non-availability, affordability	Imbalanced or inadequate and inefficient use of nutrients	Loss of soil fertility and sub-optimal crop yields due to loss of C and GHG emissions	
Crop need based N application	Knowledge gap, fertilizer subsidy in many developing countries	Inefficient including either inadequate or excess use of N fertilizer	Low levels of SOC from inadequate N use or loss of SOC and increase in N ₂ O emissions from excess of N	
Controlled water application	Poor irrigation infrastructure, bad policies such as heavy subsidy on energy and water	Inefficient water management	SOC loss and increased GHG emission from frequent soil wetting and drying	
Use of crop varieties with SOC associated traits such as deep rooting	No breeding efforts for deep rooting traits	Use of varieties with shallow rooting	Inadequate root biomass	
Fallow management: cover crop, weedy fallow	Poor land management and lack of financial incentives	Bare fallow	SOC loss and GHG emissions	
Crop rotation optimization	Knowledge gap, poor infrastructure, lack of incentives	Sub-optimal crop rotation, i.e. rotations with long fallow or rotations with contrasting edaphic management requirement (rice-wheat rotation)	SOC loss of GHG emissions	

Socioeconomic constraints to adoption of potential SOC sequestration practices.

Conservation Agriculture and Water Stable Aggregates (>0.25mm)

 Percent increase in WSA under CA over CT in major cropping systems °. J

- 14 studies across South Asia
- Different soil types
- Different duration (2-10 years)

Source: Synthesized from Jat et al (2023), Advances in Agronomy, Courtesy: Mukund Patil (ICRISAT)

Conservation Agriculture and Hydraulic Conductivity (mm/hr)

	Cropping		Duration	Soil denth	Hydra condu (mm h	ulic ctivity ⁻¹)		
Location	system	Soil type	(years)	(cm)	СТ	CA	Δ (%)	References
Karnal, India	Rice-wheat	Loamy	8	0–15	3.18	10.5	+230	Patra et al. (2019)
Karnal, India	Maize-wheat			0-15	3.18	7.45	+134	
New Delhi, India	Maize-wheat	Sandy loam	2	0-15	10.9	13.6	+24.8	Choudhary and Behera
				15-30	9.34	11.1	+18.4	(2020a,b,c)
Uttarakhand, India	Maize-wheat	Sandy clay	4	0–7.5	14.3	16.3	+14.24	Bhattacharyya et al. (2006)
	loam	7.5–15 13.3 15.	15. <mark>5</mark>	+18.1				
				15-22.5	12.5	13.8	+7.47	
Madhya Pradesh,	Soyabean-	Clayey	7	0-7.5	7.70	26.4	+243	Hati et al. (2015a)
India	wheat			7.5–15	5.61	14.2	+153	

Source: Jat et al (2023), Advances in Agronomy

Mechanisms for improved soil–plant–water relations in CA v/s CT

INTERNATIONAL CROPS RESEARCH

Source: Jat et al (2023), Advances in Agronomy

Conservation Agriculture (CA) on available micronutrients (DTPA-extractable (mg kg1) after 10 annual cropping cycles

		0-5 cm depth			5–15 cm depth			
	Zn	Mn	Fe	Cu	Zn	Mn	Fe	Cu
CT-RW	4.07b	14.1a	27.5a	2.21a	5.30b	10.6a	26.8a	4.09a
CA-RW+ Mb	7.25a	14.1a	8.09b	1.38a	7.83a	11.7a	19.8b	1.94a
CA-MW+ Mb	5.05ab	15.0a	10.1b	1.41a	8.40a	9.43a	17.7c	2.93

CT, Conventional till; RW, Rice-wheat; Mb, Mungbean; MW, Maize-wheat. Means followed by the same letter(s) within each column do not differ statistically ($P \le 0.05$) using Duncan's Multiple Range Test.

Source: Roy et al., (2022)

Conservation Agriculture and soil microbial population after 3cropping cycles

Treatment	Bacteria (CFU×10 ⁴ g ⁻¹ soil)	Fungi (CFU×10 ² g ⁻¹ soil)	Actinomycetes (CFU×10 ⁴ g ⁻¹ soil)
CT-RW	74.7d	45.3d	35.5c
CA-RW	85.9b	63.7b	50.8b
CA-RWMb	94.3a	73.1ab	68.0a
CT-MW	81.4c	53.8c	44.9c
CA-MW	87.4b	66.5b	54.2b
CA-MWMb	95.5a	76.2a	70.3a

Where CT, Conventional till; CFU, Colony forming unit. Means followed by the same letter(s) within each column do not differ statistically ($P \le 0.05$) using Tukey's HSD test.

Source: Choudhary et al., 2018

Effect of CA practices on Soil microbial biomasses

Microbial biomasses	CA based rice– wheat-mungbean	Integration of mungbean	MW verses RW
MBC	117%	66%	48%
MBN	171%	142%	73%

Biologically active fractions -sensitive indicators, predict direction and rate of change of soil quality earlier and better

Choudhary et al (2018), Applied Soil Ecology

Discourses of Regenerative Agriculture

Multiple component discourses may make RA vulnerable to co-optation and greenwashing, diluting its transformative potential

Four Tensions

- Genealogy and holism
- Equity and power
- Definition
- Departure

Should not indulge into the discourses

Remember what can help in:

- carbon sequestration
- reduce GHG emissions
- protect and enhance biodiversity
- improve water retention in the soil
- reduce agro-chemicals, and
- support farming livelihoods

Strategies to Address Tensions on Regenerative Agriculture

- RA discourse coalition- a common neutral platform for learning, capacity, collective wisdom & action
- System-based approaches
- Multi-criteria analysis
- Well defined Theory of Change (ToC) at local, sub-national, national level
- Bridge knowledge and capacity gaps
- Get away from silver bullet and One Size Fits all based investments: science evidence-based targeting and investments (Policy)
- Integrate social and behavioural science communication: No more apprehensions/perceived risks but have reality check

ICRISAT

Source: ML Jat and PB Shirsath

Systems' Approach for Transformation

Moving from Plot to Landscapes

- Holistic & integrated approach at the farm and landscape level, working in partnership with all users/stakeholders.
- Three levels for making the shift towards Climate Resilient Agri-Food Systems, (i) farm, (ii) landscape and (iii) entire food system

Regenerative Landscape Approach for Building Climate Resilience in Vulnerable Ecologies

Farmer income: 3X

- Water table: Up from 26 m to 4.5 m
- Enhanced base flow by 150%
- Emission intensity: Down from 0.14 to 0.06
- Livelihoods (In-migration)
- Cropping intensity up from 110 to 180%
- Arresting land degradation
- Sustainable intensification of 35000 ha degraded fallow land
- Temperature regulation towards (1.5 °C targets)

Science evidence led impact with landscape management

- Seven agroecology with rainfall ranging 400-1500 mm
- 150K households
- 100K ha area

ICRISAT awarded 'UNDP-Mahatma Award 2023 for Biodiversity Conservation' for using regenerative landscape approach

ہ بگر

INTERNATIONAL CROPS RESEARC

Ramesh Singh et al, ICRISAT

Karnataka, India Use-case of ISFM- farmer participatory approach: Impact at scale

Crop	Yield gains				
	FP	ISFM	% inc		
Sorghum	1851	2427	31		
Maize	3932	5157	31		
Paddy	3977	4953	25		
Pearl millet	1449	2082	44		
Finger millet	1452	1849	27		
Pigeonpea	543	732	35		
Groundnut	1397	1832	31		
Soybean	1524	1923	26		
Cotton	1056	1284	22		
Chickpea	758	1002	32		

- Other states (AP, Odisha, UP) have mainstreamed the outputs and learnings in their investment plans for scaling ISFM
- 1.5 million ha in Andhra Pradesh through DoA

Resilient Agriculture-Vibrant Industry: Synergy for Climate Action through Cropping Carbon

- Carbon neutrality commitments
- Agriculture can provide larger carbon offsets
- Industry can benefit farmers through carbon credits and ESS from CRA
- Growing carbon markets (300 billion USD/year)
- Pull factor through incentive mechanism for low emission farming practices
- Valuation of ecosystem services and designing payment for ESS
- Approaches, tools, protocols, tracking, verification and enabling policies are needed for mainstreaming RA in investment plans

• INTERVIEW: MAHUA ACHARYA, MD & CEO, CESL 'Market size for carbon credits trading around \$300 bn/year'

°. L

Green Credit- Government of India

Capacity (Confidence, Consensus) Development

- A new cadre of RA-Community of Practitioners (RA-CoP) need to be developed
- Centre of Excellence on RA
- RA Living Labs

JICRISAT.

• Dryland Academy

Dryland Living lab for Vertisols @ ICRISAT enerative Production Systems for Dryland Vertisols

°. J

• Optimization of CA (RA) requires attention to location-specific performance (Zhang, Wei, Sapkota, Jat et al, Field Crops Research 2022)

Key Messages

- Change of people's mindset is very critical, creating awareness and bridging knowledge and capacity gaps at all levels-Discourse coalition
- Soil health= combination of NRM, agronomic practices with holistic & systems' approach (Bio-physical, Technological, Socioeconomic)
- A paradigm shift is needed from crops and cropping to Integrated faming systems at landscape and eco-region scale
- Strengthening RA research with focus on One Health
- Global/National Mission on RA
- Investments in Research and Innovation for Region/Location specific Practices with strong partnership (All actors need to work together)
- Carbon/nature credits- harmonized methods, tools, protocols and policies

ML Jat, ICRISAT | mangilal.jat@icrisat.org

