
EVALUATION OF FUZZY LOGIC SYSTEMS TO ASSESS CLIMATE SUITABILITY OF ITALIAN RYEGRASS 

157 

 

EVALUATION OF FUZZY LOGIC SYSTEMS  
TO ASSESS CLIMATE SUITABILITY OF ITALIAN 

RYEGRASS  
 

Shinwoo Hyun1 and Kwang Soo Kim1,2,3 

 
1Department of Plant Science,  

Seoul National University, Seoul, Korea 
2Interdisciplinary Program in Agricultural and Forest 
Meteorology, Seoul National University, Seoul, Korea 
3Research Institute of Agriculture and Life Sciences, 

Seoul National University, Seoul, Korea 
 

E-mail: luxkwang@snu.ac.kr 
 

ABSTRACT 
 

Assessment of climate suitability for a crop would provide information to 

develop adaptation options to climate change in a region. A climate 

suitability index at a site of interest can be determined using a fuzzy logic 

system, which makes use of expert knowledge or existing data to develop a 

model. The hierachical fuzzy logic system that depends on rule statements 

and logical operation between them has been developed to assess climate 

suitability of forage crops. In the present study, alternative operators and 

rules for the fuzzy logic system were explored to improve reliability of the 

climate suitability assessment model. Annual yield data of Italian ryegrass 

were compared with climate suitability index under the assumption that 

climate suitability index would represent potential yield. The fuzzy logic 

system was modified applying standard union, standard intersection, 

bounded sum, and bounded difference to the logical operation that combines 

suitability of temperature and precipitation. A simple form of the fuzzy logic 

system was also developed using the rule statements that characterize 

suitability of temperature and precipitation based on the duration of 

optimum temperature condition and precipitation amount under a favorable 

temperature condition, respectively. It was found that the use of standard 

union resulted in greater coefficient of determination (0.68) between yield 

and the climate suitability index for given seasons than the original model 

(0.53), which suggested that application of an alternative logical operator 

could improve reliability of the model. Application of an alternative rule 

statement also resulted in a reasonable assessment of climate suitability. In 

particular, application of a boundary regression analysis indicated that the 
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climate suitability index obtained from the simple form of the fuzzy logic 

system could be compared with the potential yield at a given site. For 

example, the root mean square error of the simple model was relatively small 

for Italian ryegrass when the climate suitability index was compared with 

yields near the boundary line, e.g., within 95% confidence limit, which 

would represent the potential yield at a site. The climate suitability model 

based on the fuzzy logic system explained a large variation (70.3 %) of 

average yield for an extended period. The alternative model was also useful 

to identify countries where climate suitability was gerater for alfalfa in 

Europe. This suggested that the variants of fuzzy logic system would be 

useful to assess climate suitability of a production area, which would provide 

information on decision making and adaptation planning under a given 

climate condition. These models can be applied to climate change scenario 

data in a region, which would provide reliable information for small scale 

farmers who attempt to introduce crops to their farms under a future climate 

condition. 

 

Keywords: Species distribution model, fuzzy logic, uncertainty, minor 
crop, climate change adaptation  

 

INTRODUCTION 
 

Changes in a cropping system have been suggested as an adaptation option 

to minimize the negative impact of climate change on crop production (Butt 

et al., 2005; Chen et al., 2012; de Jong et al., 2001; Howden et al., 2007; 

Lobell et al., 2008; Robert et al., 2003). For example, cropping practices 

such as planting date could be shifted depending on future climate conditions 

(Alexandrov et al., 2002; Tubiello et al., 2002). New cultivars that have 

more tolerance to environmental stress could be used in the future (Beebe et 

al., 2011; Nyabako et al., 2012). Practices in tillage, irrigation, and fertilizer 

application could also be used as an option for climate change adaptation. 

Forage crops can be introduced into a cropping system as an additional 

option for climate change adaptation (Howden et al., 2007). Cultivation of 

forage crops would have various effects on ecosystem services including a 

negative impact on soil erosion, reduction of greenhouse gas emission 

through enhancement of the biogeochemical cycle (Cavigelli et al., 2013; 

Davis et al., 2012; Lugnot and Martin, 2013; Lemaire et al., 2014). Forage 

crops would be less affected by environmental stress (Olesen et al., 2011), 

which would help stable primary production under changing climate 

conditions. Still, assessment of climatic suitability for a forage crop would be 

desirable before it is introduced into a cropping system in a region. 

Considerable efforts have been made to develop a model to predict the 
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productivity of forages. For example, Johnson et al. (2003, 2008) developed 

a model to support decision-making on pasture management, such as 

DairyMod and SGS Pasture models. Models that determine the daily growth 

of crop have also been used to predict yields of forage crops (Kiniry et al., 

1995; Ojeda et al., 2016) and to assess climate change impacts on pasture 

systems (Cullen et al., 2009). Such models are often dependent on local 

management information, e.g., variety, fertilizer application rate, and 

irrigation, which is often limited to specific sites (Abraha and Savage, 2008). 

Alternatively, a climate suitability model can be used to assess the 

environmental feasibility of forage and minor grain crops in a region 

(Ramirez-Villegas et al., 2013). In particular, a fuzzy logic system would 

facilitate development of a climate suitability model for forage crops of 

which exact or specific information is limited (Okeke and Karnieli, 2006; 

Zadeh, 1965). Center and Verma (1998) suggested that fuzzy logic would be 

useful for modeling in biological and agricultural systems. Kim et al. (2018) 

developed a fuzzy logic system to predict climate suitability of three forage 

crops. 

A fuzzy logic system is often implemented using rules derived from 

current knowledge. This would help prediction of climate suitability for a 

forage crop in a region with minimum sets of data, e.g., monthly temperature 

and precipitation. Still, rules can be modified to determine the values of 

climate suitability index for greater efficiency. For example, a simple form of 

rules can be used to calculate climate suitability index without penalty in 

reliability.   

The objectives of this study were to develop and to evaluate the variants 

of a climate suitability model for Italian ryegrass, which is an important 

forage crops in Korea and Japan (Koizumi et al., 1993; Sugawara et al., 2006; 

Valan et al., 2014). Evaluation of such models would provide an insight to 

make the best use of fuzzy logic system for reliable assessment of climate 

suitability in a region. This would help identify crop production areas under 

a given climate condition, which would aid the climate smart agriculture. 

  

MATERIALS AND METHODS 
 

Yield and climate data 
 

Yield data of Italian ryegrass were used to compare the climate suitability 

index obtained from different types of fuzzy logic systems. The yield dataset 

includes annual yield data at 18 sites in three countries including the USA, 

Belgium, and Australia. Daily weather data including daily minimum and 

maximum temperatures, and precipitation were collected at those sites from 

weather databases. For example, weather data at the sites in the US and 
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Belgium were obtained from the Utah Climate Center 

(https://climate.usurf.usu.edu/). Daily weather data at Australian sites were 

collected from the Bureau of Meteorology, Australia 

(http://www.bom.gov.au/). Daily weather data were summarized by month to 

prepare input data to the fuzzy logic system for calculation of climate 

suitability index. Detailed description of these data sets can be found in Kim 

et al. (2018).   

 

A fuzzy logic system to assess climate suitability of Italian ryegrass 
 

Kim et al. (2018) developed the hierarchical fuzzy logic system that 

evaluates rules associated with climate conditions for growth and survival of 

a crop (Fig. 1). The fuzzy logic system consists of a fuzzy set and logical 

operation between fuzzy sets. The fuzzy set converts a crisp value of a 

variable into a degree of membership using its membership function. For 

example, a given precipitation, e.g., 200 mm, is translated into a degree of 

membership, e.g., 0.2, using a fuzzy set of “suitable” for precipitation. A 

detailed description of fuzzy sets can be found in Ahamed et al. (2000). 

The membership function of a fuzzy set is defined using parameter 

values that can be determined using experimental data. The parameter values 

can also be determined using existing knowledge. For example, Kim et al. 

(2018) used the EcoCrop database to determine those values (Table 1). This 

approach would require no calibration process to identify parameter values 

that result in the least difference between observation and prediction through 

iteration. In particular, it would be challenging to calibrate a climate 

suitability model beacause only a small set of data would be available for 

minor crops such as forage crops. 

 

Alternative logical operation to the fuzzy logic system 
 

The hierarchical fuzzy logic system has been designed to evaluate the rule 

statements of suitability of temperature and precipitation for a crop, 

respectively (Fig. 1). The rule statement is combination of sub-rule 

statements such as “temperature is suitable” and “precipitation is suitable”. 

The sub-rule statement takes into account detailed conditions for temperature 

and precipitation such as the range of temperature and precipitation, which 

would affect survival and growth of a crop. 

https://climate.usurf.usu.edu/
https://climate.usurf.usu.edu/
http://www.bom.gov.au/
http://www.bom.gov.au/
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Fig. 1. The structure of the hierarchical fuzzy logic system to assess climate 

suitability of a crop in a month. The operator in gradient color indicates 

a logical operator used to combine the outcome of rule statements. Pm, 

Nm and Xm indicate precipitation, minimum temperature and maximum 

temperature in a month m, respectively. Psuitable, Tfavorable, and Tsuitable are 

fuzzy sets of precipitation and temperature, respectively. βm and Θm 

represent suitability index of precipitation and temperature, 

respectively. ORm and ANDm are climate suitability index in a given 

month using t-conorm and t-norm, respectively. The symbols in a 

gradient color represent the logical operator between fuzzy values.  

 

The rules of temperature and precipitation can be connected using logical 

operations including OR and AND, which are called t-conorm and t-norm, 

respectively. In the orginal model, the logical operation of rule statements 

including t-conorm and t-norm were defined using algebraic sum and 

algebraic product as follows (Klir and Yuan, 1995): 
𝑅𝑥 𝑜𝑟 𝑅𝑦 =  𝑅𝑥 +  𝑅𝑦 − 𝑅𝑥 ∙  𝑅𝑦 and                    (Eq. 1)  

𝑅𝑥 𝑎𝑛𝑑 𝑅𝑦 =  𝑅𝑥 ∙  𝑅𝑦.                                (Eq. 2)  

 
In fuzzy logic, alternative operator can be used to define t-conorm and 

t-norm. For example, bounded sum and bounded difference can be used to 

quantify the logical connection between two statements. These alternative 

operators are defined as follows (Klir and Yuan, 1995): 
𝑅𝑥 𝑜𝑟 𝑅𝑦 =  min (1, 𝑅𝑥 +  𝑅𝑦)  and                    (Eq. 3)  

𝑅𝑥 𝑎𝑛𝑑 𝑅𝑦 =  max (0, 𝑅𝑥 +  𝑅𝑦 − 1).                    (Eq. 4)  
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Table 1. Climate and management conditions for Italian ryegrass 

Abbreviation Description Valuea 

Gmin minimum growing period (d) 90 

Gmax maximum growing period (d) 270 

Tkill killing temperature (oC) -4b 

Tmin Minimum absolute temperature (oC) 2 

Tmax maximum absolute temperature (oC) 38 

TOPmin minimum optimal temperature (oC) 14 

TOPmax maximum optimal temperature (oC) 30 

Rmin minimum absolute rainfall (oC) 200 

Rmax maximum absolute rainfall (oC) 1800 

ROPmin minimum optimal rainfall (oC) 500 

ROPmax maximum optimal rainfall (oC) 900 
 

aThe values of crop parameters were obtained from the EcoCrop database (http://ecocrop.fao.org), which is 
operated by Food and Agriculture Organization (FAO).  

bThe hierarchical fuzzy logic system was dependent on the parameter values of -11oC for Tkill. 

 

It is possible to make use of standard union and standard intersection to 

determine the values of t-conorm and t-norm, respectively, which are defined 

as follows (Klir and Yuan, 1995): 
𝑅𝑥 𝑜𝑟 𝑅𝑦 =  max ( 𝑅𝑥 , 𝑅𝑦)     and                     (Eq. 5) 

𝑅𝑥 𝑎𝑛𝑑 𝑅𝑦 =  min ( 𝑅𝑥 , 𝑅𝑦).                           (Eq. 6) 

 
No calibration process would be needed for logical operators because 

they require no parameter, which would minimize the need for the 

observation data. However, these logical operators would cause variation in 

the values of climate suitability index. Evaluation of alternative operators 

would provide a hint to develop a reliable climate suitability model.    

Climate suitability indices derived from each logical operator were 

examined if they could represent variation of yield by site. Eqs. 3-6 were 

used to determine the values of climate suitability index. These values were 

compared with yield data at site-years as well as those of the original model. 

A climate suitability index would be an indirect indicator for crop yield. 

Thus, the coefficient of determination was calculated between the climate 

suitability index and crop yield at sites of interest to examine reliability of 

climate suitability index obtained from the variants of the fuzzy logic 

system.  

 

 

http://ecocrop.fao.org/
http://ecocrop.fao.org/
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Alternative rule to the fuzzy logic system  
 

In the present study, it was attempted to calculate climate suitability index 

using alternative rules. For example, the original model had the rule 

statements to evaluate a moisture condition for a prolonged period. 

Assessment of extreme conditions was also applied to determine the values 

of climate suitability index. These terms would be useful to evaluate 

conditions that would occur infrequently. Still, monthly data were used as 

inputs to the model to determine the climate suitability index, which would 

have limitation to represent such an extreme condition.  

A simple form of rule statements was used to focus more on ordinary 

climate conditions for growth of crops. The rule statement for temperature 

suitability was defined to take into account the length of time during which 

the optimum temperature occurred. Amount of precipitation and temperature 

condition during the given period were included in the rule statement to 

determine suitability of precipitation. The climate suitability in a given month 

m was determined using alternative rules as follows: 

 
𝑚 =  𝑇𝑠𝑢𝑖𝑡(𝑋𝑚, 𝑁𝑚) and                        (Eq. 7)  

𝛽𝑚 =  𝑃𝑠𝑢𝑖𝑡(𝑃𝑚) ∙ 𝑇𝑓𝑎𝑣(𝑋𝑚, 𝑁𝑚).                   (Eq. 8) 

 

where m and m represent the degree of suitability for temperature and 

precipitation in m, respectively. Monthly suitability index can also be 

determined as follows: 

 
𝑂𝑅𝑚 =  𝑚 +  𝛽𝑚 −  𝑚  ∙ 𝛽𝑚 and                (Eq. 9) 

𝐴𝑁𝐷𝑚 =  𝑚  ∙ 𝛽𝑚.                             (Eq.10) 

 

where ORm and ANDm are suitability index in m using t-conorm and t-norm, 

respectively.   

 

For the given planting date at each site-year, the seasonal suitability 

index was determined from a group of suitability indices by a potential 

growing season. Because the length of a growing season would differ by 

region, it was assumed that a crop would be grown during one of the 

potential growing seasons. In the EcoCrop database, there is a record such 

that growing periods for Italian ryegrass would range from 3 - 9 months. In 

each potential growing season, seasonal suitability index Gs was calculated 

as follows: 

 
𝐺𝑠 = ∑ M𝑚𝑚 /𝑙𝑠,                               (Eq.11) 
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where Mm and ls indicate monthly suitability index, e.g., ORm or ANDm, and 

the number of month in a potential growing season s, respectively. To 

determine the seasonal suitability index, the median of the Gs values was 

used.  

 

Comparison between yield and climate suitability index 
 

The distribution of yield and climate suitability index obtained from the 

variants of the fuzzy logic system was examined with visual inspection. The 

outcomes of fuzzy logic system using the alternative logical operator were 

also compared with yield data at sites where no disease risk was reported. 

Sites where diseases have caused problems in forage production were 

excluded in the analysis to take into account potential yields under a given 

climate condition. For example, crown rust (Puccinia coronate) is the most 

serious foliar disease of ryegrass species (Takahashi et al., 2005; Reheul and 

Ghequiere, 1996). White and Lemus (2014) suggested that crown rust would 

occasionally occur at sites near the coastal regions in the US including 

Poplarville and Beaumont. 

For the variants derived from alternative rules, the distribution of yield 

and climate suitability index was examined with a boundary line analysis. A 

climate suitability index would represent the impact of climate conditions on 

crop yield. Thus, climate suitability would indicate the potential yield rather 

than an actual yield (Watsons, 1963), which would be affected by crop 

management and soil conditions as well as climate conditions. In particular, 

yield data obtained under field conditions would be affected by biotic and 

abiotic stresses, e.g., diseases or a spell of extreme weather, which can not be 

assessed using monthly climate data. A boundary line would be a reasonable 

approach to examine the reliability of climate suitability indices for the 

potential yield instead of a conventional regression analysis, e.g., linear 

regression (Cade and Noon, 2003; Vaz et al., 2008). A quantile regression 

analysis was performed to obtain a boundary line between climate suitability 

index and yield at site-years. To minimize the impact of an outlier from yield 

data, the 0.95 quantile was applied to obtain boundary lines. SAS 9.3 (SAS 

Institute Inc., Cary, NC, USA) was used to perform the quantile regression 

analysis.  

The degree of agreement between observed and estimated yields was 

analyzed for site-years at which yields were near the boundary line. A 

reliable climate suitability model would have a small variation of yields 

along the boundary line obtained from quantile regression analysis because 

such a model would be able to predict the potential yield accurately under 

different conditions, e.g., at different sites. As a result, it is likely that the 

degree of agreement statistics between observed and estimated yields near 
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the boundary line, e.g., within a confidence interval at 95%, would be greater 

for a reliable model compared with the other models. Site-years at which 

observed yields were within the confidence interval of the boundary line at 

95% were selected by models. Then, the coefficient of determination and 

root mean square error (RMSE) were determined using estimates of yield for 

climate suitability index values and observed yields at those site-years. 

Averages of yield reported for an extended period were compared with 

those of climate suitability index by site. Climate suitability in a region 

would be associated with a long-term yield rather than an annual yield. It 

was assumed that periods more than or equal to three years would represent 

an extended period. Yield averages and climate suitability index were 

calculated for the sites where yield data were available at least for three 

years.  

 

Assessment of climate suitability of alfafa using the alternative rule 
 

The model with alternative rule was applied to assess climate suitability of 

Medicago sativa L. in Europe. Yield data of alfalfa in European countries 

were obtained from the Eurostat website (http://ec.europa.eu/eurostat). 

Countries where yield data were available for more than or equal to three 

years were included in the further analysis. To identify locality where M. 

sativa L. would be grown, occurrence data of M. sativa were obtained from 

Global Biodiversity Information Facility (GBIF) database 

(http://www.gbif.org). The parameters for M. sativa were obtained from the 

FAO-EcoCrop database.  

Climate suitability index for alfalfa was calculated by cell using gridded 

climate data. Because yield data available by country, it was necessary to 

calculate climate suitability index within the boundary of countries. Climate 

conditions would differ by region even in a small country, a gridded 

calculation of climate suitability index was needed. In the present study, the 

E-OBS gridded datasets were used as inputs to the model (Haylock et al., 

2008).  

In gridded calculation, the starting date for a growing season was 

unknown. Thus, climate suitability index was calculated for each day in a 

season. The maximum value of climate suitability index was chosen as the 

final suitability index in the given season. The values of final suitability 

index were determined for the periods from 2000 to 2014 at each cell. 

Climate suitability index at occurrence site was averaged within the 

administrative boundary of countries in Europe.  

 

 

 

http://ec.europa.eu/eurostat
http://ec.europa.eu/eurostat
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RESULTS 
 

Application of alternative logical operation  
 

Reliability of the fuzzy logic systems differed by the logical operator (Fig. 2). 

Application of standard union to the logical operation between rule 

statements for suitability of temperature and precipitation explained the 

greater variation of yield using the climate suitability index. In contrast, 

combination of these rule statements using the standard intersection had the 

lower coefficient of determination. Overall, t-conorm resulted in higher 

values of R2 than t-norm for combination of rules to evaluate suitability of 

temperature and precipitation.  

 

Application of alternative rule to the existing model  
 

The scattering patterns between climate suitability indices and yield at given 

site-years were similar to a triangular shape for the fuzzy logic system based 

on t-conorm (Fig. 3A). Yield tended to increase with increasing climate 

suitability index obtained from the fuzzy logic system with the alternative 

rule, which was similar to that of the original model. For example, yields at 

Gatton in 1994 were lower than 1985. The climate suitability indices from 

the fuzzy logic system were 0.64 and 0.92 in 1994 and 1985, respectively. 

Climate suitability index was relatively high at Beaumont in 2005 (0.92) 

when the yield was considerably low (6,054 kg ha-1). As a result, a clear 

boundary line was obtained between climate suitability for the fuzzy logic 

system based on t-conorm and yield at site-years. In contrast, such a trend 

was less evident in the distribution of yield for climate suitability index 

obtained from t-norm (Fig. 3B). 
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Fig. 2. Distribution of observed yields at site-year for climate suitability index 

values obtained using (A) standard union t-conorm, (B) bounded sum 

t-conorm, (C) standard intersection t-norm, and (D) bounded difference 

t-norm. The names of t-conorm and t-norm were used after Klir and Yuan 

(1995). 

 

The degree of agreement between yield data estimated and reported at 

site-years of which yield were near boundary line was considerably high for 

the fuzzy logic system based on t-conorm (Fig. 4). For example, the R2 value 

for the fuzzy logic system was 0.95. The root mean square error (RMSE) for 

the model was relatively small (1,297 kg ha-1), which was about 11% of 

average yield at sites of interest. However, the fuzzy logic system based on 

t-norm had climate suitability index values that clustered together for a 

certain range of yield.   
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Fig. 3. Distribution of observed site-year yield for climate suitability index of the 

fuzzy logic system based on the alternative rule using (A) t-conorm and 

(B) t-norm. A line in each plot represents boundary lines at 0.95 

quantile for corresponding models. Individual site-year was denoted by 

the first letter of site name and a season. 
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Fig. 4. The relationship between reported and estimated yields at site-years of 

which yields were within the 95% confidence limit of the boundary line 

for the alternative fuzzy logic system using (A) t-conorm and (B) t-norm. 

Individual site-year was denoted by the first letter of the site name and 

a season. The line in the plot indicates 1:1 line. 
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Averages of climate suitability index for an extended period explained a 

large variation (70%) in those of reported yield at sites where no disease risk 

was reported (Fig. 5). The fuzzy logic system that depends on alternative 

rules had a highly significant correlation between averages of yields and 

climate suitability (p = 0.0098) when t-conorm was used to combine the rule 

statements. In contrast, no significant correlation between averages of yield 

and climate suitability index obtained from the fuzzy logic system based on 

t-norm was found.  
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Fig. 5. The relationship between averages of yield and climate suitability index 

for the fuzzy logic system based on (A) t-conorm and (B) t-norm, 

respectively. A line in each plot represents a regression lines for 

corresponding models. Yields and climate suitability index for an 

extended period, e.g., ≥ three years, were averaged for a given site. The 

individual site was denoted by the first letter of site name. 
 

Application of alternative model to alfalfa 
 

When the regression coefficient obtained from the analysis of annual 

ryegrass was used as the slope of a regression line between climate 

suitability index and average yields of countries, it appeared that these yields 

were aligned with two regression lines (Fig. 6). There was a group of 

countries where the yield of alfalfa was considerably higher than other 

countries for a given climate suitability index. Those countries include 

Poland, Italy, Denmark, Estonia, Spain, and Croatia. For the second group of 

countries, the intercept of a regression line between climate suitability index 

and alfalfa yield was considerably low, e.g., 7,268 kg ha-1. Although climate 

suitability index was considerably high, e.g., > 0.78, in Serbia and Bosnia 

and Herzegovina, yield of alfalfa was relatively low, e.g., < 4500 kg ha-1. 
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Fig. 6. Distribution of alfalfa yields for climate suitability index during extended 

periods in European countries. After the slope of the line was fixed to 

be 18,900, the intercept of lines were obtained from regression analysis 

for two groups of countries where yields of alfalfa was considerably 

different for given climate suitability index. Yield data in Bosnia and 

Herzegovina (Bosnia&Herz) and Serbia were excluded from the 

analysis. The former Yugoslav republic of Macedonia was denoted by 

Yugoslav. Yields and climate suitability index were averaged for the 

period during which yield records were available ≥ three years.  

 

DISCUSSION 
 

This study illustrated that the climate suitability index obtained from the 

variants of the fuzzy logic system would be useful to estimate the potential 

yield of Italian ryegrass. Climate suitability would represent the potential 

yield at a site under given climate condition when the impact of extreme 

weather events and non-climate factors, e.g., soil and disease, would be 

minimal. The potential yield based on climate suitability would be greater 

than or equal to actual yield, which would result in a triangular distribution 

between actual yield and climate suitability index (Greenberg et al., 2015; 

Maller, 1990; Vaz et al., 2008). Using the fuzzy logic system, such a 
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distribution was obtained for individual seasons. The fuzzy logic system also 

had a significant relationship between yields and climate suitability for an 

extended period at sites with relatively low disease risks. 

It appeared that the type of logical operator such as standard union over 

standard intersection would have a considerable impact on reliability of 

climate suitability index because the rules of suitability for temperature and 

precipitation are combined in a different way. For example, the R2 value of 

the fuzzy logic system with standard intersection was considerably lower 

than that of the fuzzy logic system with standard union although difference 

between these systems was the logical operator between the rule statements. 

This suggested that an optimum set of logical operator can be found. For 

example, Genesis and Jonas (2014) used a complex function to combine 

multiple terms for prediction of yield. Thus, it would be merited to explore 

additional set of logical operators, which could improve the reliability of 

climate suitability assessment.  

Although the choice of logical operators affected the reliability of the 

fuzzy logic system to determine climate suitability index, the rule statement 

of the fuzzy logic system would also have considerable impact on reliability 

of climate suitability index. In the present study, it was shown that t-norm 

would be inferior to t-conorm for evaluation of two rule statements on 

temperature and precipitation. Nevertheless, application of simple rule did 

not decrease the reliability of climate suitability assessment, which suggested 

that the simple form of fuzzy logic system would be useful to reduce the 

computation time. In particular, gridded assessment of climate suitability 

would help individual farmers who plan to introduce a new crop in their farm 

in a given region (Zabel et al., 2014). 

Climate suitability of a crop has been used to evaluate suitable areas to 

cultivate certain crop in the future with projected climate scenarios 

(Ramirez-Villegas et al., 2013). In those studies, long-term averages of 

climate data have been used as inputs to determine climate suitability indices. 

For example, the time resolution of climate surfaces is usually limited to 

monthly averages for normal years, e.g., 30 years. Thus, it would be 

worthwhile to compare the outcomes of climate suitability assessment using 

long-term averages of climate data as inputs to the model and averages of 

climate suitability index values for the period. Spatial averages of climate 

suitability index could also be used for reliable assessment of climate 

suitability. Thus, further studies would be merited to examine the impact of 

spatial and temporal characteristics of climate data on the reliability of 

climate suitability index. Still, spatial assessment of climate suitability index 

would help growers identify crop production areas with suitable climate 

conditions, which would aid climate smart agriculture.    
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CONCLUSION 
 

The fuzzy logic system into which knowledge of ecological envelope for a 

crop can be formulated has been implemented using a diverse set of options 

including logical operators and rules. Evaluation of these variations would 

help reliable assessment of climate suitability for a crop. In particular, forage 

crops including Italian ryegrass can be benefit from the climate suitability 

model because few crop models are available for these minor crops. Further 

studies would be merited to examine climate suitability of other minor crops 

such as vegetables. Such studies would provide information for small 

farmers who try to implement the climate smart agriculture.  
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