[成果情報名]CO₂施用条件下におけるイチゴ「さがほのか」の日中加温による増収

[**要約**]イチゴ「さがほのか」の光合成速度は、光強度 $300 \, \mu \, \text{mol} \, \text{m}^2 \text{s}^{-1}$ 以上の時、葉温 $13 \, \text{℃}$ と比較して $18 \, \text{ℂ} \, \text{で} \, 25 \, \text{%以上高くなる。} \, \text{CO}_2 \, \text{施用条件下において} \, 18 \, \text{ℂ} \, \text{の日中加温により「さがほのか」の成熟日数は 5 日程度短縮され、12 月から 2 月までの商品果収量が 20%程度増加する。$

[キーワード]イチゴ、日中加温、光合成速度、収量

[担当]佐賀県農業試験研究センター・野菜花き部・野菜研究担当

[代表連絡先]電話 0952-45-2143

[分類]研究成果情報

「背景・ねらい〕

佐賀県は九州の中では特に厳寒期の日射量が少なく、ハウス内の気温が低く推移しやすい。イチゴの成熟には積算気温が関係するため、低日射によるハウス内気温不足は、果実の成熟が進まず収量低下の要因となる。また、佐賀県内では CO_2 発生装置が半数以上の生産者で導入されており有効活用法の開発が望まれている。そこで、 CO_2 施用条件下において日中の加温が「さがほのか」の収量に及ぼす影響を検討する。

[成果の内容・特徴]

- 1. 「さがほのか」の光合成速度は、CO₂濃度 400ppm で光強度 300 μ molm⁻²s⁻¹ 以上の時、葉温 13℃と 比較して 18℃で 25%以上高くなる(図 1)。
- 2. 曇天で日射量が低い日に日中加温したハウス内気温は、対照と比較して高く推移する(図2)。
- 3. CO₂施用条件下における 18℃の日中加温により、第 1, 2 次腋果房頂果の 1 果重は対照と同程度となるが、成熟日数は 5 日程度短縮される(図 3)。
- 4. $C0_2$ 施用条件下における 18° Cの日中加温により、 $12\sim2$ 月までの商品果は、平均 1 果重がやや小さくなるものの果数が増加し収量が 20%程度増加する。全期間では商品果収量が 10%程度増加する(表 1)。

[成果の活用面・留意点]

- 1. 本成果は CO2 濃度を換気時 400ppm、無換気時 800ppm で施用した条件下で得られたものである。
- 2. 本成果の日中加温はヒートポンプ (NGP1010T-N, ネポン) を用い、間口 8m、奥行き 12m、軒高 4m のハウス内高設ベンチで試験を実施した。
- 3. 日中加温は 12 月から開始し、日中のハウス内気温が 18℃を下回る期間実施した。ヒートポンプ の設定温度は $6:00\sim10:00$ を $6\sim18$ ℃、 $10:00\sim16:00$ を 18℃、16:00 以降を 6℃とした。対照の設 定温度は終日 6℃とした。
- 4. 日中加温によりハウス内が乾燥しやすくなるため潅水量を適宜調節する。

[具体的データ]

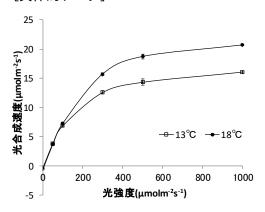


図 1 イチゴ「さがほのか」の異なる葉温 における光強度と光合成速度の関係 (2017年) ※測定条件は CO₂ 濃度 400ppm, 相対湿度 70%. 誤差線は標準誤差を示す, n=4.

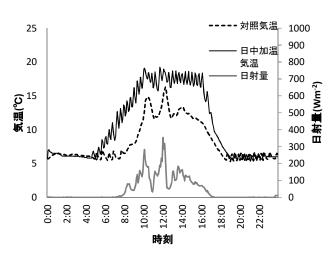


図2 日中加温時の気温の推移(2017年) ※2017年12月12日(曇りー時晴れ)のハウス内気温

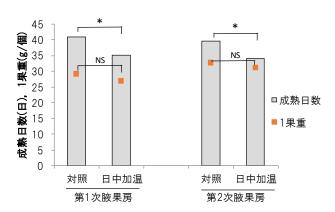


図3 日中加温が成熟日数および各果房頂果の 1 果重に及ぼす影響(2017年) ※t 検定により*は5%水準で有意差有 NS は有意差無, n=3

表1 日中加温が商品果数、果重、収量に及ぼす影響(2016, 2017年)

年次	処理 ⁻	日中加温期間(12~2月) 商品果			全期間(11~6月)		
					 酉品果		
		果数	平均1果重	収量	果数	平均1果重	収量
		(個/株)	(g)	(g/株)	(個/株)	(g)	(g/株)
2016年	対照	10.6	15.8	169.0	41.4	13.9	575.8
	日中加温	13.6	15.3	205.7	45.0	13.9	626.4
2017年	対照	16.2	18.7	302.8	44.2	16.9	745.5
	日中加温	21.0	17.3	362.1	51.6	16.1	833.5
処理		**	**	**	**	NS	**
年次		**	**	**	**	**	**
交互作用		NS	NS	NS	NS	NS	NS

※分散分析により**は1%水準で有意差有 NS は有意差無, n=4

(佐賀県農業試験研究センター)

[その他]

予算区分:委託プロ(革新的技術開発・緊急展開事業(地域戦略プロ))、県単

研究期間:2016~2018年度

研究担当者:田川愛、江原愛美、伊藤優佑、江頭淳二、大串和義