

オーランチオキトリウムの大量生産技術を開発 - 新しい微細藻類産業を創出 -

試験研究計画名: 未利用藻類の高度利用を基盤とする培養型次世代水産業創出に向けた

研究開発

研究代表機関名: 国立研究開発法人水産研究·教育機構

背景とねらい:

私たちの課題は、オーランチオキトリウム類と呼ばれている微細藻類の培養技術と利用技術を確立し、機能性食品や餌飼料等の応用した製品を生み出し、我が国に新しい藻類産業を創出することを最終的な社会実装の姿として目標に据え、研究開発を進めております。オーランチオキトリウム類は、機能性食品素材として有名なドコサヘキサエン酸(DHA)をきわめて効率的に産生・蓄積するという特長をもっております。現在流通している DHA の主な供給源は天然資源である魚から得られていますが、漁獲量や DHA 含有量が不確実との課題もあり、人工的に培養することで DHA が効率的に生産できるオーランチオキトリウム類は魅力的な素材であると考えています。

特長と効果:

本課題ではユーグレナ社がオーランチオキトリウムの大量生産技術開発を担当し、大量培養、収穫・乾燥、抽出、カプセル化を含め、実用的なコトで生産する技術を開発しました(写真1)。本技術により、食品としても利用できるコストでオーランチオキトリウムを生産することが可能になりました。本技術で製造したオーランチオキトリウム藻体及び抽出出き用いて、宇都宮大学、立命館大学と東京

■ オーランチオキトリウム粉末製造までの流れと達成状況

■ 品質を保証できるオーラン粉末について一貫生産が可能であることを実証できた。

図 1 オーランチオキトリウム生産技術の確立

農工大学が、廃用性筋萎縮や変形性関節症モデルなどで機能性の評価を行いました(図2)。機能性の評価に関しては今後も継続の予定です。

写真 1 培養されたオーランチオキトリウム

さらに、オーランチオキトリウムの食品以外への応用もはかるべく、水産養殖用飼料へオーランチオキトリウム藻体を配合して各種魚介類の飼育試験が実施しました(ヒガシマル社、図 3)。DHA を豊富に含むオーランチオキトリウム藻体配合の飼料で飼育することにより、マダイやカンパチ、エゾアワビ、カワハギなどで、従来に比べ DHA を 20~60%も多く含有させることに成功しました。このように、培養コストの低減と DHA 強化養殖魚の実用化が可能となります。

社会実装の対象と可能性:

ユーグレナ社は「もっとバイオ多気」プロジェクトにおいて、オーランチオキトリウム類の実用化・社会実装を進めてます。また、立命館大学や宇都宮大学は水産機構やユーグレナ社と連携を取りつつ機能性の解明を進めていく予定ですので、オーランチオキトリウム応用食品として社会実装が進んでいくと考えています。

参考文献:

- ·福田真也、多田清志、渡邉信、伊藤純一、 微生物の培養方法、特願2017-0907.
- · Sato T, Ishihara K, Shimizu T, Aoya

J, Yoshida M, Laboratory scale culture of early stage *Marsupenaeus japonicus* larvae fed on Thraustochytrids *Aurantiochytrium* and *Parietichytrium*. *J. Shelfish Res.* **37**(3) 571-579(2018).

研究担当機関名:水産研究・教育機構、筑波大学、(株)ユーグレナ、(株)ヒガシマル、立命館大学、宇都宮大学、東京農工大学

研究担当者: 水産研究・教育機構:石原 賢司、清水 智仁、今村 伸太朗、佐藤 琢、筑波 大学:石田 健一郎、吉田 昌樹、(株)ユーグレナ:鈴木 健吾、朝山 雄 太、竹内 卓人、岩田 修、(株)ヒガシマル:水間 洋、鈴木 孝彦、熊谷 裕 貴、伊藤 純一、立命館大学:藤田 聡、宇都宮大学:吉澤 史昭、東京農工 大学:野村 義宏、丸山 拓馬

問い合わせ先: 国立研究開発法人水産研究・教育機構 中央水産研究所

電話:045-788-7615(代表) E-mail : nrifs-kiren@ml.affrc.go.jp

作成日: 2019/5

○自然発症変形性関節症モデル ○廃用性筋萎縮モデル (-) 雄STR/ortマウス(+)

図 2 オーランチオキトリウムの 機能性評価

図 3 DHA 強化魚作出技術開発