[成果情報名]粘着テープによるウンシュウミカン果実の日焼け軽減法

[要約]ウンシュウミカンにおいて、8月上旬に粘着テープを果実の陽光面に貼付することで、果実の日焼けを軽減できる。労働時間は化繊布を被袋する方法と同程度で、資材費は化繊布に比べて10a当たり約1/3程度である。

[キーワード]ウンシュウミカン、日焼け軽減対策、粘着テープ

[担当] 鹿児島県農業開発総合センター果樹・花き部常緑果樹研究室

[代表連絡先]099-245-1138

[分類]普及成果情報

「背景・ねらい〕

近年の気候変動により、カンキツ類では、夏季の極端な高温による日焼け果の発生が問題となっている。効果的な日焼け防止法として、化繊布を被袋する方法が一般的であるが、コストが高く、労働時間を要するため普及していない。そこで、かぼちゃの日焼け対策として普及している粘着テープを用いて、ウンシュウミカンにおける日焼け防止効果を検証する。

[成果の内容・特徴]

- 1. ウンシュウミカンでは、8月以降、強日射により果皮が褐変して日焼け症状が発生するため、8月上旬に粘着テープを陽光面に貼付することで、化繊布と同程度に日焼けを防止できる(図1、図2、表1)。
- 2. 無処理の果面温度は、日焼け果の発生が懸念される 45℃以上となる。一方, 粘着テープを貼付および化繊布を被覆した果面温度は、光透過をカットするため、無処理に比べて 4℃程度低くなる (表 2)。
- 3. 粘着テープの貼付、除去の労働時間は、10 a 当たりの作業時間は、能率優先で約 10 時間、精度優先で約 25 時間であり、化繊布による方法と同程度である(表 3)。
- 4. 10a 当たりの資材費は3,508 円/年と、化繊布(11,888 円/年, 耐用年数5年)に比べて約1/3程度であり、粘着テープを貼付したウンシュウミカンの果実表面に粘着糊は残らない(データ略)。

[普及のための参考情報]

- 1. 普及対象:ウンシュウミカン生産者
- 2. 普及予定地域・普及予定面積・普及台数等: 鹿児島県内及び九州沖縄のウンシュウミカン産地
- 3. その他:
 - 1) 本試験で用いた品種は「かごしま早生」20年生である。
 - 2) 用いた粘着テープ(みかんまもるテープ、菊水テープ株式会社)は、降雨や強風の影響で果実から剥がれることがあり、剥がれた場合には、速やかに再貼付する。
 - 3) 外気温が低下し、日焼け果の新たな発生が見られない場合には粘着テープを除去する。
 - 4) 粘着テープの貼付後に肥大が進むことで枝が下垂し、日光の当たる部位が貼付面からずれることで、日焼け果が発生する場合がある。

[具体的データ]

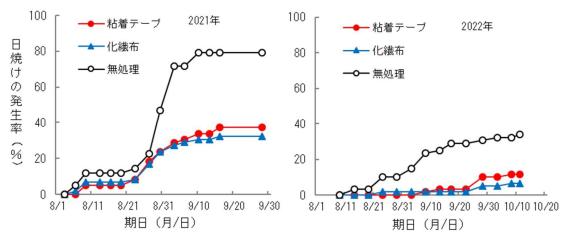


図1 果実を保護する資材の違いと日焼け果の発生推移

- 注1)調査果実数 各区20個×3樹
 - 2) 粘着テープ添付及び化繊布の被袋日:2021年8月3日、2022年8月9日
 - 3) 粘着テープ、化繊布の除去日: 2021年9月28日、2022年10月11日

表1 果面を保護する資材の違いが収穫時の 日焼けに及ぼす影響

試験区 -	日焼けの発生度		
	2021/9/28	2022/10/11	
粘着テープ	18.9 a	3.9 a	
化繊布	17.3 a	2.2 a	
無処理	53.5 b	19.2 b	
有意性	*	**	

- 注1)調査果実数は各区20個×3樹
 - 2) 日焼けの発生度は 0 (無) \sim 3 (甚) の 4 段階で 評価し、 Σ (発生度別個数×程度/調査果数) \times 100で 算出した
 - 3) 分散分析により *:5%水準で有意差あり, **:1% 水準で有意差あり
 - 4) 異なる英小文字にはTukey-Kramerの多重比較により 5%水準で有意差あり

表2 果面を保護する資材の違いが果面温度 に及ぼす影響(2022年)

- AH 445	果面温度 (℃)		
試験区	8月29日	9月7日	
粘着テープ	43.3(-4.7)	38.4(-4.3)	
化繊布	43.2(-4.8)	38.8(-3.9)	
無処理	48.0 (\pm 0.0)	42.7 (\pm 0.0)	

- 注1)各樹5個×3樹
 - 2) 果面温度の測定は赤外線サーモグラフィカメラ (FLIR C2, FLIR社製) で晴天日の13時から13時30分に測定
 - 3)()は無処理との温度差
 - 4) 13時の気温は31.1℃ (8/29) , 25.6℃ (9/7) アメダス値

表3 各資材の設置及び除去労働時間(延べ)

作業内容	試験区	設置 (h/10a)	除去 (h/10a)	計 (h/10a)
能率優先 (2021年)	粘着テープ	7. 2	2. 4	9. 6
精度優先 (2022年)	化繊布 粘着テープ 化繊布	7. 7 21. 7 17. 7	2. 4 3. 7 7. 2	10. 1 25. 4 24. 9

- 注1) 能率優先:能率(速さ)を重視した作業 10代男性 精度優先:作業の正確性(丁寧さ)を重視した作業 20代男性
 - 2) 10aあたりの労働時間は,処理果実数4,872個 (87個/樹×56樹) に1個あたり労働時間を乗じて,試算した。
 - 3) 20年生「かごしま早生」を用いた。

図2 粘着テープの陽光面への貼付状況

(鹿児島県農業開発総合センター)

[その他]

予算区分:県単

研究期間:2018~2022年度

研究担当者:川村秀和、楠 聡太(鹿児島県農総セ)

発表論文等: 鹿児島県/普及に移す研究成果(令和4年度:普及情報)

https://www.pref.kagoshima.jp/ag11/pop-

tech/nenndo/documents/reiwa4nendokennkyuuseika.html#kajyu