[成果情報名]イチゴ「大分6号」の収量と品質の向上のための環境制御技術

[要約] CO_2 施用と温度制御によってイチゴ「大分6号」の収量が増加するとともに、不受精果の発生が低減される。また、3月までの CO_2 施用と春先の温度制御によって糖度が上昇する。

[キーワード]イチゴ、「大分6号」、環境制御、CO2施用、温度制御

[担当]大分県農林水産研究指導センター・農業研究部・果菜類チーム

[代表連絡先]電話0974-28-2081

[分類]普及成果情報

[背景・ねらい]

イチゴ「大分6号」の栽培上の問題として、早期収量の伸び悩み、不受精果の発生、春先の糖度の低下が挙げられ、その改善が求められている。そこで、光合成促進を目的とした環境制御(CO₂施用と温度制御)による「大分6号」の収量性の向上と不受精果の発生低減効果を明らかにする。また、春先の温度制御による糖度上昇効果を明らかにする。

[成果の内容・特徴]

- 1. CO_2 発生機を用い、11 月中旬~3 月の日の出から換気開始(9 時半頃)までのハウス内 CO_2 濃度を 600ppm、換気開始から日没までの濃度を 400ppm に維持し(図 1 上)、かつ 4 段サーモ加温装置を用い、日の出時のハウス内気温が 15° Cになるよう、日の出前から 1 時間あたり 2° C程度の上昇範囲で温度制御し、さらに 4 段階換気装置を用い、日の出後から 1 時間あたり 2° C程度の上昇範囲で温度制御する(図 1 左下)。4 段サーモ加温装置の設定温度は、夜温 8° C、4 時から 5 時は 10.5° C、5 時から 6 時は 12° C、6 時から 7 時は 15° Cとする。また、4 段階換気装置の設定温度は、9 時から 10 時は 17° C、10 時から 11 時は 19.5° C、11 時から 12 時は 22° C、12 時から 13 時は 24° Cとする。
- 2. 春期のハウス内気温は、冬期同様の温度制御に加えて、4 段階換気装置を用い、日中から夜間にかけて換気し、低温管理する(図 1 右下)。4 段階換気装置設定温度は、7 時から 8 時から 1 日本 1 前から 1 日本 1 日本
- 3. 上記の CO_2 施用・温度制御によって、年内から年明け($11\sim1$ 月)の収量性が向上し、5 月までの合計可販果収量が、 CO_2 施用のみと比較して 11%、無施用・無制御と比較して 21%増加する(表 1)。
- 4. CO₂ 施用・温度制御によって、第一次腋果房の第一花序の不受精果発生指数が、CO₂ 施用のみと比較して 36%、無施用・無制御と比較して 43%軽減される(図 2)。
- 5.3月までのCO₂施用と春期の温度制御によって、無制御と比較して3月末から4月中旬の糖度が8%以上で維持される(図3)。
- 6. CO_2 施用によって、2月末から3月中旬の痩果密度が10%低くなり、果実の肥大が促進される(データ省略)。

[普及のための参考情報]

- 1. 普及対象:「大分6号」生産者、普及指導機関
- 2. 普及予定地域・普及予定面積・普及台数等: 大分県、10ha
- 3. その他:

処理区名	温度管理(最低-最高)	CO ₂ 施用 ^{z)}
CO ₂ 施用・温度制御	「日の出1時間前15℃") 日の出後日中18~24℃ ^{x)} 夜温8℃	有
CO ₂ 施用のみ	8−25°C	有
無施用・無制御	8-25°C	無

- z)施用期間:2022年11月15日~2023年3月29日、施用濃度:7~9時600ppm、9時~17時400ppm
- y)4段サーモ加温装置を用い、日の出時のハウス内気温が15 $^{\circ}$ になるよう、日の出前から1時間あたり2 $^{\circ}$ 2程度の上昇範囲で徐々に加温。
- x)4段階換気装置を用い、日の出後から1時間あたり2℃程度の上昇範囲で緩やかに換気。 また、4月以降ハウス内日平均気温21℃に達しないよう換気温度を調整。

[具体的データ]

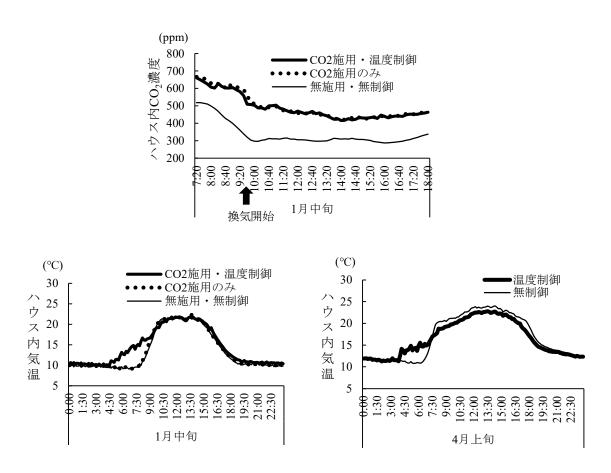


図1 冬期のハウス内の CO_2 濃度(上)と気温(左下)、春期のハウス内気温(右下)の推移

表 1 月別可販果収量 z)y) (g/株	1		月別	可販果	収量 z)	y) (g/株)
-----------------------	---	--	----	-----	-------	----------

	11月		12月]	1月		2月		3月		4月		5月		合計	+	年内合	計 :	3月末台	指
CO ₂ 施用·温度制御	42	a	121	a	167	a	165	b	271	a	96	a	98	a	960	a	164	a	766	a
CO ₂ 施用のみ	44	a	84	b	87	b	253	a	250	ab	77	a	74	a	868	ab	128	a	717	ab
無施用•無制御	33	a	107	ab	63	b	259	a	206	b	57	a	68	a	793	b	140	a	669	b

z)多重比較(Tukey法)により異符号間で有意差あり(p<0.05)。

y)n=3(1区8株3反復)

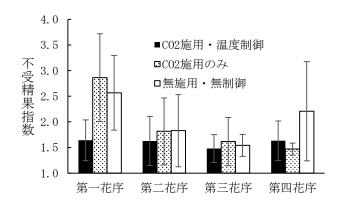


図 2 第一次腋果房の各花序の不受精果指数 エンッン

z)不受精果指数··そう果の不受精程度を外観で判断し、以下の指数に分類した。

1:整形果

1.5:シルエットは整形果であるが、そう果に不受精が混じる

2:不受精により少し果形が乱れる程度の果実

3:不受精により果形が悪くなっているが、可販果であるもの

4: 不受精により販売できない果実

y) CO₂施用・温度制御区・第一花序:n=14、第二花序:n=39、第三花序:n=54、第四花序:n=15 CO₂施用のみ区・第一花序:n=11、第二花序:n=30、第三花序:n=51、第四花序:n=17 無施用・無制御区・第一花序:n=15、第二花序:n=41、第三花序:n=58、第四花序:n=12

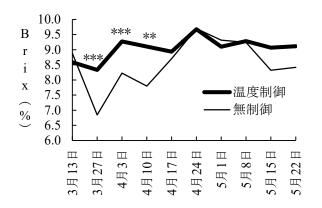


図3 春期の糖度 ヹの推移

図中の**は t 検定により 1%水準で有意差あり。***は 0.1%水準で有意差あり

(大分県農林水産研究指導センター農業研究部)

「その他]

予算区分:県単

研究期間: 2022 年度

研究担当者:能見伊久絵、若林美里、得能彩歩、佐藤郁

発表論文等:なし