単年度試験研究成績(2005年1月作成)

共通基盤 > 病害虫 > 虫害 > > I - 2 - k

課題ID:03-05-05-01-01-04

研究課題:ヒヨドリの渡来数予察システムの開発

担当部署:農研機構・中央農研・耕地環境部・鳥獣害研究室

担当者名:山口恭弘、吉田保志子、百瀬浩

協力分担:

予算区分:鳥獣害

研究期間: 継2001~2005年度

1. 目的

ヒヨドリは秋季に北日本から関東以南に南下し、1-3 月に各地で果樹や葉菜類に多大な被害を及ぼしている。秋季のうちに西南日本に南下するヒヨドリの個体数を予察することができれば、被害発生前に年に応じた適切な防除手段をとることが可能となる。今年度は冬季における液果量の変動とヒヨドリ個体数変動の関係を山地と平地で比較することにより、予察に適した環境を抽出するとともに、日本全国におけるヒヨドリの秋季の渡りの傾向を明らかにする

2 . 方法

- (1) 筑波山から農林研究団地までの南北約30kmの範囲に8ヶ所の調査地を設け、10月から翌年4月まで月2回、ヒヨドリの個体数と液果量を調査した。環境は山地自然林、山麓2次林、河畔林、公園的環境(各2地点)である。
- (2) ヒヨドリの個体数調査は、決められたライン(距離 1.5~2.5km)を一定の速度で歩き、出現したヒヨドリの個体数をカウントする方法で行い、km²あたりの個体数に換算した。
- (3) 液果数は平地の調査地では全数調査を行い、山地の調査地では高木層は全数調査、低木層はラインの両側5mの範囲を調査し、調査範囲に換算した。さらに各樹種100個の実から平均果実重をもとめた。液果量は液果数と平均果実重より求め、km²あたりに換算した。
- (4) 渡りの調査はメーリングリスト、HP 等を活用して、広く情報の収集に努めた。
- (5) 収集した渡りの情報のうち、同一調査地で複数の観察日があるものを抽出し、調査地ごとに調査時間を揃えて渡りの傾向を調べた。

3 . 結果の概要

- (1) ヒヨドリの個体数は公園的環境の調査地で液果量の変動とよく一致していた(図1)。山地自然林と 山麓二次林ではあまり一致していなかった。河畔林は1カ所でのみよく一致していた。一致してい ない河畔林は筑波山の麓であり、山からの移動個体が多いためと考えられた。
- (2) 液果量は山地自然林、山麓2次林よりも河畔林や特に公園的環境で多かった。液果量の多い調査地 ほど液果量の変動とヒヨドリの個体数が一致しており、液果量の豊富な公園的環境は重要な調査地 になると考えられた(図1)
- (3) ヒヨドリの秋季の渡りは地域ごとに異なり、西日本で早く始まり、北海道では一番遅かった(図2)。このことは西日本ではまず地域内で渡りが行われることを示唆し、地域単位での液果の豊凶が予察システムを構築する上で重要であると考えられた。
- (4) ヒヨドリの秋季の渡りは2ヶ月間という長期間にわたっていた(図2,3)。 兵庫や愛媛の調査地では大きなピークの後も渡りはしばらく続き、地域レベルの渡りだけでなく地域を越えた渡りの存在も示唆された。
- (5) 以上のことより、ヒヨドリ年変動の調査地として液果量の豊富な公園的環境が適切であること、地域レベルでの液果の豊凶が予察に重要であることがわかった。一方、遠距離の渡りもあることから日本全体での液果の豊凶を調べることも予察の精度を上げるには必要と考えられた。

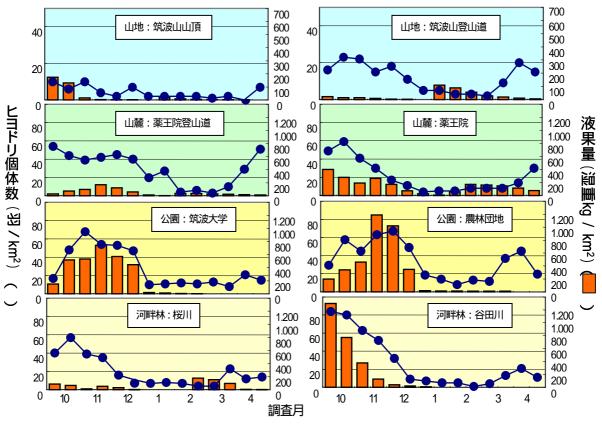


図1.10月から4月にかけてのヒヨドリの個体数変動と液果量変動

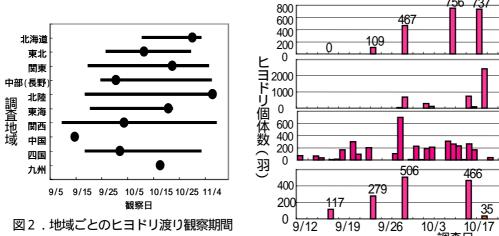


図2.地域ごとのヒヨドリ渡り観察期間

最初に観察された日から最後に観察された日までを実線で 示し、最大羽数が観察された日を黒丸で示した。

図3.4地域の秋季1日あたりのヒヨドリ渡り個体数

35

4. 今後の問題点と次年度以降の計画

(1) 全国より収集したヒヨドリ個体数、液果の豊凶の年変動のデータを解析し、農林水産省の被害統計 を用いてヒヨドリ渡来数予察システムを開発し、被害予測の方法を考案する。

5 . 結果の発表、活用等

山口恭弘 農業技術 59(4), p.173-178

山口恭弘 第51回日本生態学会大会講演要旨集, p.208, 2004.8.28

山口恭弘 日本鳥学会 2004 年度大会講演要旨集, p.93, 2004.9.18

山口恭弘 第52回日本生態学会大会講演要旨集,2005年3月(予定)

山形

神奈川

216

10/24 10/31

11/7