ポーラスコンクリートを通過する流れの流速と動水勾配の関係

浅野 勇*·林田洋一*·增川 晋*·田頭秀和*

		目
Ι	緒 言	227
Π	ポーラスコンクリートを通過する流れの水頭	
	損失特性・・・・・	227
1	実験方法	227
2	実験結果	229
3	考察	231

I 緒 言

材料内部を水や空気が通過することがポーラスコンク リート(POC)の大きな特徴である。POCを水質浄化, 沈砂池,ダムの法面対策などに活用していくためには, POC内部を通過する流れの特性を把握する必要がある。 特にPOCを通過する水の流れを対象とする場合は,流 れの動水勾配と流速の関係を明らかにすることが重要で ある。

(批日本コンクリート工学協会(2003)による「ポーラ スコンクリートの透水試験方法(案)」によれば、POC の透水特性は定水位透水試験に基づく透水係数により評 価される。しかし、この試験における動水勾配の条件は 0.3 以下と定められているのみであり、明確な設定値は 示されていない。すなわち、試験から求められた透水係 数がどのような動水勾配で行われた試験値であるか不明 である。また、動水勾配が0.3 以上の流れについては一 般に検討されていない。つまり、POC の透水試験方法 は広範囲な動水勾配に対応したものではなく、動水勾配 が0.3 以上の領域における POC を通過する流れに関す る情報は極めて少ないのが現状である。

一方, POC に似通った空隙構造を有する礫あるいは 砕石においては広範囲な動水勾配における透水試験が実 施されており,内部を通過する流れの動水勾配と流速 の関係は非線形になることが報告されている(松尾ら, 1970;森井ら,2000)。空隙構造が良く似た材料を通過 する流れが相似の関係になるとすれば,POC を通過す る流れについても動水勾配と流速の関係は非線形になる

平成21年11月5日受理

キーワード:ポーラスコンクリート,非線形流れ,水頭損失, 透水試験,動水勾配,流速, Ergunの式

VL
-//K
~ ~ ~

${\rm I\hspace{1em}I}$	動水勾配と流速の関係式	232
1	骨材種別ごとの水頭損失推定式	232
2	水頭損失推定式の予測精度の検証	235
IV	結 言	239
参考	文献	240
Sum	mary	241

と考えられる。実際,動水勾配が0.08~0.75の範囲に おける POC の透水試験から POC を通過する流れの動水 勾配と流速の関係は非線形になることが報告されている (紺日本コンクリート工学協会,1995)。

本研究では、骨材種別及び空隙率が異なる POC 及び 骨材単体の供試体を作成し、供試体ごとに動水勾配を変 化させた定水位透水試験を行い、供試体を通過する流れ の動水勾配と流速の関係を明らかにする。さらに、化学 工学の分野で粒状体を通過する流れの圧力低下推定式 として用いられる Ergun の圧力降下式(三輪, 1981)を POC の動水勾配 – 流速関係に導入し、POC の内部を通 過する流れの動水勾配 – 流速関係を POC の空隙率及び 骨材種別から推定するモデル式の作成を試みる。なお、 本研究における POC 供試体を通過する流れは、POC の 内部が完全に水に飽和されている状態(飽和状態)を対 象とする。

II ポーラスコンクリートを通過する流れの水頭 損失特性

POC 供試体及び骨材単体を対象に定水位室内透水試験を行い、供試体の動水勾配と流速の関係を求めた。

1 実験方法

a 実験の概要

Table 1 に実験ケースを示す。使用骨材は5号,6号,7号,再生コンクリート骨材(以下 RC 骨材と呼ぶ)及び3号珪砂の5種類である。骨材の平均粒径D((最小寸法+最大寸法)/2,以下単に骨材粒径と呼ぶ)の範囲は0.19~1.65cmである。空隙率を10~30%の間で3~4段階変化させた POC 供試体を作成し,供試体1本あたり動水勾配を7~8段階変化させて定水位室内透水試験を行い,内部を通過する流れの動水勾配と流速の

^{*} 施設資源部構造研究室

Table 1 実験ケース Experimental conditions.

実験 ケース	骨材 種別	供試体	粒径 [mm]	目標 隙率 [%]	目標 水位差 [mm]	目標 動水 勾配
C5-0		骨材単体		-		
C5-1 C5-2 C5-3	5号	POC	13-20	10 20 30		
C6-0		骨材単体		-		
C6-1 C6-2 C6-3	6号	POC	5-13	10 20 30		
C7-0		骨材単体		-]	
C7-1 C7-2 C7-3	7号	POC	2.5-5	10 20 30	30 ~ 250	0.15 ~ 1.25
RC-0		骨材単体		-		
RC-1 RC-2 RC-3 RC-4	RC	RC POC 5-		10 20 25 30		
S3-0		骨材単体		-		
\$3-1 \$3-2 \$3-3	3号 珪砂	POC	2.38	10 20 30		

関係を求める。なお,骨材単体も同様の試験を実施する。 b 使用材料

骨材の物理的性質を Table 2 に示す。5,号,6号,7 号砕石は茨城県新治村産の硬質砂岩を母材とする。RC 骨材はコンクリート製の電柱を母材とする。3 号珪砂は 福島県相馬産である。セメントは高炉 B 種(密度 3.04 g/cm³)を,混和剤はポリカルボン酸エーテル系高性能 AE 減水剤を用いた。

c 配合条件

骨材の実積率から骨材中の空隙量を求め、空隙量に 見合ったペースト容積を計算し、POCの配合を行った。 骨材の実積率を修正する補正係数は1.0とした(日本コ ンクリート工学協会、2003)。配合表を**Table 3**に示す。

d 供試体の作成及び空隙率の測定

容量 55 リットルのパン型強制練混ぜミキサを使用し、 1 バッチ当たり 40 リットルで練混ぜを行った。練混ぜ は、(粗骨材 + 1/4 の水) → (30 秒練混ぜ) → (セメン ト投入) → (30 秒練混ぜ) → (残りの 3/4 の水投入) → (120 秒練混ぜ) → (排出),の順に行った。塩ビパイプ (内径 108mm)内に試料を詰め,締固め,高さ約 20cm の円柱供試体を作成した。締固め方法は、5 号、6 号及 び RC 供試体では 3 層に詰め、各層を突き棒で 25 回突 き固めた (**Fig.1** の 1)。ただし、目標空隙率 30%の 6 号 及び RC 供試体では,円形圧縮板付きのこて型バイブ

 Table 2
 骨材物性

 Physical properties of the aggregates.

骨材 種別	粒径 [mm]	表乾 密度 [g/cm ³]	絶乾 密度 [g/cm ³]	吸収率 [%]	単位 容積 質量 [kg/m ³]	実績率 [%]
5号	13-20	2.67	2.65	0.71	1,632	61.0
6号	5-13	2.66	2.64	0.73	1,697	63.7
7号	2.5-5	2.66	2.64	0.75	1,657	62.2
RC	5-15	2.47	2.33	5.88	1,578	64.1
珪砂3号	2.38	2.62	2.60	1.30	1,621	63.1

注:単位容積質量,実績率は表乾での測定値。単位容積質量 は珪砂のみ突き棒での締固め。その他はこて型バイブレータ を使用。

Table 3 配合表 Mixture proportions of POC.

実験	骨材	目標 空隙率 (%) (%		単位	量(kg	g/m ³)	混和剤
ケース				W	С	G	(kg/m^3)
C5-1		10		133	477	1,632	1.4
C5-2	5号	20		87	312	1,632	0.9
C5-3		30		41	148	1,632	1.5
C6-1		10		120	427	1,697	1.3
C6-2	6号	20		74	263	1,697	0.8
C6-3		30		28	99	1,697	0.5
C7-1		10		126	452	1,657	1.4
C7-2	7号	20	20	80	288	1,657	0.9
C7-3		30	20	35	123	1,657	1.2
RC-1		10		120	427	1,578	1.3
RC-2	DC	20		74	263	1,578	0.8
RC-3	ĸĊ	25		51	181	1,578	0.5
RC-4		30		28	99	1,578	1.0
S3-1	ヰむ	10		124	442	1,621	1.3
S3-2	上印	20		78	278	1,621	0.8
S3-3	35	30		32	113	1,621	1.1

レータ(振動数150~180Hz)により2層(1層締固め 時間8秒)で締固めた(Fig.1の2)。7号珪砂供試体では, 圧縮板を自由落下させ締固めた(Fig.1の3)。供試体の 養生は,材齢1日までは20±1℃の恒温室にて湿潤養 生,材齢2日以降は20±2℃の水中養生とした。材齢5, 6日でポーラスコンクリートの物性試験(案)(日本コ ンクリート工学協会,2003)に従い供試体の空隙率を測 定した。その後再び水中養生し,材齢26~28日で室内 透水試験を行った。供試体の外観をFig.2に示す。なお, 空隙率の計算に用いた供試体の気中質量は,供試体を湿 潤状態で放置し,供試体の質量変化が落ち着いた放置7 日後の値を用いた。供試体質量の時間変化をFig.3に示 す。

e 室内透水試験

室内透水試験はポーラスコンクリートの透水試験方法 (案)(日本コンクリート工学協会,2003)に準拠して行っ た。試験装置の外観を Fig.4 に概要を Fig.5 に示す。試 験ではあらかじめ POC を打設した塩ビパイプを試験装 置の透水円筒に接続し,供試体の上下端に30~250mm

Fig.1 供試体の締固め方 Method of compaction of the specimen.

7号 珪砂3号

Fig.2 供試体の外観 Outward appearance of the specimens.

(動水勾配に換算すると0.15~1.25)の水位差を発生させた。この水位の範囲内で動水勾配を0.1~0.2刻みで7~8段階変化させ通水流量を測定した。通水流量は、容器で集水し、その質量から計算した。通水流量を集水時間と供試体の断面積で割り供試体を通過する流れのみかけの平均流速vを求めた。水位差は、ピエゾメータにより上部透水円筒と越流水槽の水位をmm単位で読み取った。水位差及び流量は3回測定し、その平均値から

Fig.4 透水試験装置の外観 Outward appearance of a permeability test apparatus.

Fig.5 透水試験装置の概要 Outline of the permeability test apparatus.

動水勾配及び流速を計算した。供試体の飽和度を高める ため、試験前に水中で供試体を通水し内部の空気を抜い た。骨材粒径が小さな7号及び珪砂3号供試体では時に 念入りにこの作業を行った。試験時の水温範囲は22~ 25℃であった。

骨材単体も同様の試験を行った。供試体は,底に金網 を付けた塩ビ管の中に骨材を1層約5cmの厚さで,4層 詰めし,高さ約20cmの円柱供試体を作成した。各層は 突き棒で15回突き固めた。POC供試体と同様に供試体 を水中で通水し,木づちを用いて塩ビ管の外側をたたき, 内部の空気を抜き飽和度を高める準備を行った。

2 実験結果

a 供試体の実測空隙率

Table 4 に供試体の空隙率の測定結果を示す。3 号珪 砂 POC を除けば空隙率は目標値より 10%程度大きく なった。骨材粒径が大きく目標空隙率が小さい供試体 ほど目標値との差が大きくなる傾向が見られた。これ は、骨材粒径が大きく密に詰まった供試体では突き棒に よる締固めエネルギーでは締固めが十分に行えなかった ためと考えられる。なお、以下の説明では、供試体条件 を区別するために骨材種別と実測空隙率を組み合わせた

Fig.6 供試体記号 Symbol of the specimens

Table 4 供試体の空隙率 Measurement of void content in the specimens.

供試体 記号	骨材 種別	供試体	目標 空隙率 [%]	実測 空隙率 [%]	実験 ケース
C5-S		骨材単体	-	43.3	C5-0
C5-22	r ب		10	21.9	C5-1
C5-32	35	POC	20	31.5	C5-2
C5-39			30	39.1	C5-3
C6-S		骨材単体	-	42.2	C6-0
C6-21	(早		10	21.4	C6-1
C6-30	05	POC	20	29.9	C6-2
C6-31			30	30.6	C6-3
C7-S		骨材単体	-	42.5	C7-0
C7-19		POC	10	19.1	C7-1
C7-26	15		POC	20	25.7
C7-32			30	31.5	C7-3
RC-S		骨材単体	-	39.9	RC-0
RC-20			10	19.8	RC-1
RC-27	RC	DOC	20	26.7	RC-2
RC-30		POC	25	29.9	RC-3
RC-33			30	32.7	RC-4
\$3-\$		骨材単体	-	35.2	S3-0
S3-10	3号		10	9.5	S3-1
S3-13	珪砂	POC	20	13.1	S3-2
S3-26			30	26.2	S3-3

Fig.6 に示す供試体記号を用いる。

b 透水試験結果

礫を通過する流れの動水勾配 i と流速 v の関係は i を v の 2 次関数で表す場合と v の累乗式で表す場合がある (森井ら, 2000)。本研究では,森井ら (2000)の研究に 基づき POC を通過する流れの動水勾配 i と流速 v の関 係が式 (1)の 2 次関数で近似できると仮定する。

$$i = av + bv^2 \tag{1}$$

ここで, *i* は供試体上下端間の動水勾配, *v* は流速 [cm/s], *a*, *b* は実験より求まる係数である。式(1)の物理的な 意味は, *v* に比例する項が層流に起因する水頭損失, *v*² に比例する項が乱流に起因する水頭損失を意味する。室 内透水試験から求めた動水勾配 *i* と流速*v* の関係を骨材

Fig.7(b) i - v の関係 (6 号砕石)Relationship between the hydraulic gradient *i* and discharge velocity *v* (No.6 crushed stone).

Relationship between the hydraulic gradient i and discharge velocity v (Used recycled aggregate).

種別ごとに **Fig.7(a)** ~ (e) に示す。図の〇記号が実測値, 実線は実測値を式(1)によって回帰した 2 次曲線である。 図から実測値と回帰曲線は良く一致することがわかる (決定係数 \mathbb{R}^2 は全ての曲線で 0.99 以上)。よって, POC 供試体を通過する流れの動水勾配 *i* と流速 *v* の関係は式

Fig.7(e) i - v の関係(珪砂 3 号)Relationship between the hydraulic gradient *i* and discharge velocity *v* (No.3 silica sand).

骨材	粒径	平均粒径		実測	動水	勾配	流速	[cm/s]	限界					
種別	[mm]	[cm]	供試体	空隙率 [%]	最小	最大	最小	最大	レイノルズ 数 Re	係数a	係数 b			
			骨材単体	43.3	0.08	1.36	2.13	9.52	1750	0.002	0.015			
5 早	12 20	1.65		21.9	0.16	1.15	0.56	1.74	320	0.142	0.534			
55	15-20	1.05	POC	31.5	0.12	1.23	0.96	3.38	621	0.050	0.093			
				39.1	0.10	1.16	1.68	6.35	1167	0.021	0.026			
			骨材単体	42.2	0.09	1.27	1.79	7.81	783	0.008	0.020			
(早	5 12	0.00		21.4	0.18	1.20	0.38	1.22	122	0.202	0.638			
05	5-15	0.90	POC	29.9	0.16	1.22	0.91	3.02	303	0.075	0.109			
				30.6	0.17	1.30	0.96	3.35	336	0.085	0.091			
		0.38	骨材単体	42.3	0.13	1.29	0.84	4.40	186	0.140	0.036			
7 브	255		0.38 POC	19.1	0.13	1.34	0.23	1.06	45	0.395	0.812			
15	2.5-5			25.7	0.20	1.32	0.50	1.76	75	0.251	0.282			
				31.5	0.19	1.31	0.66	2.35	99	0.175	0.163			
			骨材単体	39.9	0.10	1.32	1.61	7.09	790	0.022	0.023			
				19.8	0.21	1.29	0.31	0.94	105	0.335	1.091			
RC	5-15	1.00	POC	26.7	0.15	1.21	0.65	2.29	255	0.111	0.181			
			POC	29.9	0.18	1.25	0.94	3.06	341	0.093	0.102			
				32.7	0.16	1.18	1.10	3.64	405	0.067	0.070			
			骨材単体	35.2	0.09	1.29	0.17	1.84	39	0.460	0.132			
3号	1422	0.19		9.5	0.15	1.27	0.0284	0.185	4	4.960	10.027			
珪砂	1.4-2.3	0.19	POC	13.1	0.17	1.28	0.056	0.329	7	2.818	3.216			
							26.2	0.25	1.47	0.198	0.916	19	1.133	0.516

Table 5 透水試験結果 Results of the permeability test.

(1)の2次関数で近似できると考えられる。骨材の異なる供試体の試験結果を回帰し求めた係数*a*, *b*を Table 5 に示す。なお,表中の限界レイノルズ数*R*_eは以下の式(2)から計算した。

$$R_e = \frac{\rho_w D v}{\mu} \tag{2}$$

ここで, ρ_w: 水の密度[g/cm³], D: 骨材の平均粒径

[cm], ν :供試体内平均流速[cm/s], μ :水の粘性係数 [g/cm·s],水の物性は25℃における ρ_w =0.997 [g/cm³], μ =0.00895[g/cm·s]を用いた。

3 考察

a 流れの状態に関する考察

POC及び骨材単体を通過する流れの限界レイノルズ 数*R*_eの範囲を骨材種別ごとに**Table 6**に示す。実験にお

Table 6 レイノルズ数の範囲 Reynolds number range with the permeability tests.

再打锤印	限界レイノルズ数 Re					
1月 17] 1里 加	最小	最大				
5 号	320	1750				
6号	122	783				
7 号	45	186				
RC 骨材	105	790				
3号珪砂	4	39				

ける限界レイノルズ数 R_e は4~1750の範囲にあり1より大きな値を取る。よって、供試体を通過する流れは概ね乱流状態であったと考えられる。

b 係数 a, b と空隙構造の関係

室内透水試験の結果から POC 供試体を通過する流れ の動水勾配 i と流速 v の関係は式(1) で表されること がわかった。ここでは式(1)の係数a, bと供試体の空 隙構造の関係について考察する。Table 5 から、使用骨 材が同一な供試体では、空隙率が小さくなるほど係数a, bの値が大きくなることが分かる。この傾向は, Fig.7(a) ~ (e) で供試体の空隙率が小さくなるほど 2 次関数のグ ラフの開きが小さくなることからも明らかである。ま た, Fig.7(c)~(e) で空隙率がほぼ等しい3本の供試体 (RC-27, C7-26, S3-26) に対する動水勾配のグラフを 見ると、供試体の骨材粒径が小さくなるほどグラフの開 きは小さくなる。すなわち、空隙率がほぼ等しい供試体 では、骨材粒径が小さいほど係数a,bの値は増加する。 つまり, 骨材粒径が小さく, 空隙率が小さな POC ほど 係数a, bの値は大きくなると推定できる。この理由と しては、供試体内部の空隙が細かく複雑になるほど、内 部を通過する流れは狭窄した細孔中を長距離移動する必 要があり、そのため流れの圧力損失は増大し、結果的に 圧力損失を表す係数a, bの値も大きくなるためと推定 できる。

Ⅲ 動水勾配と流速の関係式

POC を通過する流れの動水勾配と流速の関係を表す 式(1)を再掲すれば以下のとおりである。

$$i = av + bv^2 \tag{1}$$

式(1)の係数*a*, *b*を骨材粒径や供試体の空隙率のみ で表すことができれば,透水試験を実施せずに POC の 動水勾配と流速の関係を求めることができる。これは, POC を用いた施設,構造物を設計する際には大きな利 点となる。そこで,化学工学の分野で圧力損失の推定式 として用いられている Ergun の式に基づき,供試体の骨 材粒径及び空隙率から POC の動水勾配と流速の関係を 求める推定式の作成を試みる。

1 骨材種別ごとの水頭損失推定式 a Ergun 式の適用性の検討

化学工学の分野では粒状体を充填した充填層に流体 (気体,液体)を通過させ物質の分解や触媒反応を促進 させる方法が各種の反応装置に用いられている。充填層 に流入する流れは粒状体から抵抗を受け圧力低下を起 こす。この圧力低下を予測する式に Ergun の式がある。 Ergun の式は化学工学分野以外でも圧力低下の予測式と して広く用いられている。たとえば、穀物を通風乾燥さ せる穀物充填層の通風抵抗の推定に適用され良好な結果 を得ている(小出ら,1996;井上ら,2003)。ここでは, 粒状体の空隙構造と類似する POC に Ergun の式を適用 し, POC の水頭損失の推定を試みる。

Ergun の式は材料の空隙率 ε を用いて式(3)のよう に表される(三輪, 1981)。

$$i = \alpha \mu \frac{(1-\varepsilon)^2}{\varepsilon^3} v + \beta \rho \frac{(1-\varepsilon)}{\varepsilon^3} v^2$$
(3)

ここで、 ε : 材料の空隙率、 μ : 流体の粘性係数[g/cm·s], ρ : 流体の密度[g/cm³], v: 流速[cm/s] (単位時間に 供試体を通過する流量を流れに直角な粒状体層の面積で 割ったいわゆる平均速度), a, β : 空隙構造(比表面積, 形状,複雑さ)に依存する係数,である。式(1)と式(3) の係数を比較すると,式(1)の係数aは式(4)に示す 空隙率関数 $f(\varepsilon)$ に、係数bは式(5)に示す空隙率関 数 $g(\varepsilon)$ に影響を受けると考えられる。そこで係数a, bをそれぞれ $f(\varepsilon)$, $g(\varepsilon)$ の関数と仮定し, a, b と $f(\varepsilon)$, $g(\varepsilon)$ の関係を求めることにする。モデル化では、水温 25℃と仮定し、 $\rho = 0.997$, $\mu = 0.00895$ を用いた。

$$a = F(f(\varepsilon))$$
, $f(\varepsilon) = \mu \frac{(1-\varepsilon)^2}{\varepsilon^3}$ (4)

$$b = G(g(\varepsilon))$$
, $g(\varepsilon) = \rho \frac{(1-\varepsilon)}{\varepsilon^3}$ (5)

a~f(ε)の関係

Table 5 に示した 16 組の POC 供試体の動水勾配と流 速の関係から求めた係数 *a* と空隙率関数 *f*(ϵ)の関係を **Fig.8** 及び **Fig.9** に示す。図の直線は係数 *a* の空隙率関数 *f*(ϵ) に対する回帰直線である。**Fig.8** は 16 組の全デー タをプロットしたグラフ, **Fig.9** は **Fig.8** の原点付近にか たまっているデータを拡大したグラフである。**Fig.8** 及 び **Fig.9** から骨材の種類が同一であれば,係数 *a* と空隙 率関数 *f*(ϵ)の間には直線関係が成り立つことが分かる (全ての回帰直線で決定係数 R² は 0.97 以上)。そこで, 同種の骨材を用いた供試体を通過する流れの *a* と*f*(ϵ) の間には直線関係が成り立つと仮定し,その関係を式(6) で表すことにした。回帰分析を行い求めた式(6)の係 数 *k*₁, *k*₂ を **Table 7** に示す。

Fig.8 $a \sim f(\varepsilon)$ の関係 (全データ) Relationship between a and $f(\varepsilon)$ (full data).

Table 7 骨材別の k_1, k_2 の値 Estimated values for k_1 and k_2 from laboratory test.

骨材 種別	粒径 [mm]	平均 粒径 [cm]	空隙率 範囲 [%]	流速範囲 [cm/s]	係数 <i>k</i> 1	係数 <i>k</i> 2
5号	13-20	1.65	22~39	$0.56 \sim 6.35$	0.011	0.253
6号	5-13	0.90	$21 \sim 30$	0.38~3.35	0.034	0.297
7号	2.5-5	0.38	19~32	$0.23 \sim 2.35$	0.147	0.299
RC	5-15	1.00	20~33	0.31~3.64	0.016	0.428
3号珪砂	1.4-2.3	0.19	10~26	0.028~0.916	1.191	0.451

注:式(6)に用いる骨材種別ごとの係数を示す。空隙率及び 流速範囲は骨材種別ごとの係数に対する適用範囲を示す。

$$a = k_1 + k_2 \ \mu \ \frac{(1-\varepsilon)^2}{\varepsilon^3} \tag{6}$$

係数 k_1 は $a \sim f(\varepsilon)$ 直線の切片値を表す。切片にお いては ε=1 が成り立つ。つまり、切片では供試体の空隙 率は100%となり、k」は供試体が存在しない状態での透 水円筒を通過する流れの層流に起因する水頭損失を意 味する。供試体が存在しないので k」の値は理論的には0 になるべきだが、透水円筒内壁の摩擦などが存在するた めk₁の値は0にならない。Fig.8及びFig.9の回帰直線 のグラフを外挿し、切片値 (= k₁)を推測すると、5 号、 6号及び RC の切片値は0に近い値を取ると推定できる。 また、切片値は(5号、6号及びRC) <7号<珪砂3 号の順に大きく傾向がある。つまり、k」は供試体の骨材 粒径が小さくなるほど大きくなる。この原因は、Fig.8 及び Fig.9 から推定した k₁の値が外挿値であり, 元デー タの影響を強く受けているためと考えられる。すなわち, 空隙率が等しい $(f(\epsilon)$ が等しい) 供試体を比較した場 合,骨材粒径が小さいほど流れの損失水頭は大きくなり, 係数aの値も大きくなる。このため、骨材粒径が小さく なるほど $f(\varepsilon) = 0$ の近傍でも係数aの値は大きくなり、 外挿値である k₁ も骨材粒径が小さくなるほどその値が 大きくなると推定できる。

係数 k₂ は式(6)の直線の傾きを表す。空隙率が等し い供試体では、骨材粒径が小さいほど空隙構造は複雑と

Fig.9 $a \sim f(\varepsilon)$ の関係(3号珪砂を除く) Relationship between a and $f(\varepsilon)$ (removing No.3 silica sand data).

なり、流れの損失水頭は大きくなると仮定すれば、空隙 率が等しい供試体, すなわち空隙率関数f(ε)が等しい 場合,供試体の骨材粒径が小さくなるほど圧力損失が大 きくなり係数 a の値も大きくなる、つまり k,の値も大 きくなり直線の傾きも増加すると推測できる。たしか に, **Table 7**の平均粒径と k₂の値の関係からは平均粒径 が小さくなるほど k2の値は増加する傾向が, RC 骨材を 除いて観察される。このような考えに基づく係数 k₂ に 骨材粒径の影響を取り入れたモデル化も有効と思われる が. 今回は k, が骨材種別ごとに Table 7 に示す固有の値 を持つと考え a を推定した。なお、本研究の室内透水試 験は空隙率が20%未満の供試体の試験データが少なく、 空隙率が 20% 未満の領域における *a* と f(ε)の関数関 係について十分には明らかではない。よって、空隙率が 20%未満の領域については $a \ge f(\varepsilon)$ の関係が直線関係 であるかも含めてさらなる検討が必要である。

(2) b~g(ε)の関係

Fig.10に **Table 5**に示した b と空隙率関数 $g(\varepsilon)$ の関係及び bの $g(\varepsilon)$ に対する回帰直線及び回帰式を示す。

Fig.10から, *b*と*g*(ε)の間には直線関係が存在する と推測できる。しかし, 珪砂 3 号の 2 組のデータ(S3-10, S3-13)は他の 14 組のデータから大きく外れており,全

Fig.10 $b \sim g$ (ε) の関係 (全データ) Relationship between *b* and *g* (ε) (full data).

データから求めた回帰直線が珪砂3号の2つのデータに 強く影響を受けた関係式になる可能性がある。珪砂3号 の供試体を通過する流れは限界レイノルズ数4~39の 範囲にあり,乱流の影響が弱い領域の流れである。係数 bは乱流の影響を表す係数であるので珪砂3号のデータ に影響を受けた関係式は,乱流の影響を十分反映してい ない可能性が高い。事実,**Fig.10**から求めた係数bを用 いて予測した動水勾配と流速の関係は5,6,7号供試体 では実測の動水勾配と流速の関係と良い一致が見られな かった。

そこで、本研究では、bとg(ε)の関係が供試体の 空隙構造により変化すると仮定し、空隙構造で分類し たbとg(ε)の関係式を求めることにする。すなわち、 Fig.10に示したデータを供試体の空隙構造に応じて2つ のグループに分け、グループごとにbとg(ε)の関係 を求めることにする。この考えの背景には、供試体の空 隙構造と内部を通過する流れの状態がお互いに関係し、 内部空隙の状態が変化する境界と内部を通過する流れの 状態も変化する境界が一致するという仮定が存在する。

供試体の空隙構造に基づく流れの状態のグループ分 けを行うためには空隙構造が変化する境界を求める必 要がある。大友ら(2006)は微小点 X 線を用いた POC 供試体の空隙構造の観察から最大骨材粒径(Gmax)が 10mm と 15mm の供試体の間で POC の空隙構造が大き く変化することを明らかにした。この結果は、POCの 空隙構造が骨材粒径によって変化し、骨材粒径を指標と して空隙構造の境界を決定できる可能性を示す。大友の 試験における空隙構造の境界は、本研究では6号供試体 と7号供試体の間に存在する。さらに、松川ら(1996) は POC の横断面の観察から同じく6号供試体と7号供 試体の間に空隙構造の境界があることを報告している。 以上の研究結果に基づき、本研究では、POC 供試体の 空隙構造の境界が6号供試体と7号供試体の間に存在す ると仮定する。また、骨材粒径の算術平均を空隙構造の 境界を表す指標として用い,6号及び7号骨材の骨材粒 径の算術平均(0.90+0.38)/2 ≒ 0.6cm を空隙構造の境 界値として仮定する。

以上の考察に基づき, **Table 5**の16組の供試体デー タを大空隙グループ(以下LG)と小空隙グループ(以 下SG)の2組に分類する。LGは5号,6号,RC 骨材 を主体とする7本の供試体グループ(C5-32,C5-39, C6-30,C6-31,RC-27,RC-30,RC-33)である。骨材 粒径Dは0.9~1.65cmの範囲にある。SGは7号及び 珪砂3号の6供試体に空隙率が20%程度の3供試体 (C5-21,C6-21,RC-20)を加えた合計9本の供試体グ ループ(C5-21,C6-21,RC-20,C7-19,C7-26,C7-32, S3-10,S3-13,S3-26)である。骨材粒径Dは0.19~ 0.38cmの範囲にある。3供試体を組み入れたのは空隙率 が小さい供試体では乱流の影響が小さいと考えたためで ある。LG及びSGの空隙構造の特徴は以下のとおりで

Fig.11 $b \sim g$ (ϵ) の関係 (SG と LG でグループ分) Relationship between *b* and *g* (ϵ) (classification by SG and LG).

Table 8 粒径別の l_1 , l_2 の値 Estimated values for l_1 and l_2 with SG and LG.

グループ	適用平均 粒径範囲 [cm]	適用 骨材種	空隙率 範囲 [%]	係数 <i>l</i> 1	係数12
SG	D < 0.6	5 号 6 号 RC	$22 \sim 39$ $21 \sim 30$ $20 \sim 33$	-0.117	0.00953
LG	$D \ge 0.6$	7号 珪砂3号	$\begin{array}{c} 19 \sim 32 \\ 10 \sim 26 \end{array}$	-0.0356	0.00568

注:式(7)に用いる *l*₁, *l*₂の値を示す。平均骨材粒径 D によ り SG, LG どちらかの値を判別する。骨材種は適用骨材の 例,空隙率範囲は例示骨材に対する式の適用範囲を示す。

ある。LG は概ね最大限界レイノルズ数が 300 以上, $g(\epsilon)$ <30 であり,供試体を通過する流れは乱流の影響を強く 受けており,供試体の空隙構造は粗く疎である。SG は 概ね最大限界レイノルズ数が 300 未満, $g(\epsilon)$ >30 であり, 流れは乱流の影響が弱く層流に近い状況であり,供試体 の空隙構造は細かく密である。

Fig.11 に SG と LG の 2 つにグループ分けした *b* 及び *g*(ϵ)のデータとその回帰直線を示す。図では LG に属 するデータ及び回帰直線を赤色,SG に属するそれらを 青色で区別する。また,SG に組み込んだ 3 供試体(C5-21, C6-21, RC-20)は内部を青色で塗りつぶした記号を用 い区別する。**Fig.11**から SG 及び LG どちらのグループ に関しても,*b* と*g*(ϵ)の間には直線関係が成り立つこ とがわかる(回帰直線の決定係数は両直線とも 0.96 以 上)。よって,*b* と*g*(ϵ)の関係を式(7)で表すことに する。回帰分析から求めた SG 及び LG に対する *l*₁, *l*₂の値を **Table 8** に示す。

$$b = l_1 + l_2 \ \rho \frac{(1-\varepsilon)}{\varepsilon^3} \tag{7}$$

(3) 平均骨材粒径 D を考慮した a ~ f (ε) の関係式 式(6) は、使用骨材種ごとに係数 k₁, k₂ を設定する 必要があること、5 種類の骨材しか適用できないことな ど適用に限界がある。そこで、適用範囲を拡大するため 推定式の作成では *a* と *f*(ε)の間に以下の 2 つの仮定 が成り立つとする。

- ①骨材種に関係なく *a* と *f*(ε)の間には直線関係が成 り立つ。
- ②直線の切片,すなわち式(6)のk₁の値はDの関数であるとする。すなわちk₂=m₁(D)。

以上の仮定に基づけば, *a*と*f*(ε)の関係は式(8) で表すことができる。式(8)による*a*のモデル式の概 要を**Fig.12**に示す。

$$a = m_1(D) + m \,\mu \,\frac{(1-\varepsilon)^2}{\varepsilon^3} \tag{8}$$

式(8) は傾きmが一定で切片 m_1 がDの関数で表さ れる直線である。直線の傾きmはaに対する $f(\varepsilon)$ の 影響を代表する値である必要がある。そこで、mには **Table 7**の5種類の骨材に対する回帰直線の傾き k_2 の平 均値 0.346を用いることにした。つぎに、直線の切片 m_1 をDの関数として表すために**Table 8**のデータを用いて m_1 とDの関係を整理した。結果を**Fig.13**に示す。 m_1 は

Fig.12 式 (8) による a のモデル式の概要 Schematic diagram straight line of Eq. (8).

Fig.13 $D \geq m_1 \mathcal{O}$ 関係 Aggregate grain size (D) versus intercept of formula (8) m_1 .

Dの累乗式により式(9)で近似可能と考えた。

$$m_1 = 0.0245 D^{-2.171} \tag{9}$$

m=0.346 及び式 (9) を式 (8) に代入すると*a*を*D*と*f*(ε) の関数として表した式 (10) が得られる。

$$a = 0.0245D^{-2.171} + 0.346\,\mu \frac{(1-\varepsilon)^2}{\varepsilon^3} \tag{10}$$

式(10)の適用範囲はDが0.19~1.65cm,供試体の空隙率についてはTable 7に示すように概ね20~35%の範囲である。

2 水頭損失推定式の予測精度の検証

(1) 関数値による予測精度の検証

前節 a 項では, Ergun の式に基づき供試体の骨材粒径 及び空隙率から式(1)の係数 a, b を求める推定式を作 成した。すなわち,係数 a に対して式(6),式(10)を, 係数 b に対して式(7)を提案した。本節では,推定式 から求めた a, b を用いて計算した動水勾配グラフと実 測値から求めた a, b を用いて計算した動水勾配グラフ を比較して,推定式の予測精度を検証する。予測精度の 評価には,以下の式(11)に示す相対誤差 ɛ,を用いる。

$$\varepsilon_r = \frac{\Delta i}{i_o} = \frac{i_o - i_p}{i_o} \tag{11}$$

ここで, ε_r :相対誤差, i_o :透水試験から回帰して求 めた係数a,bを用いて式(1)から求めた動水勾配値, i_p :推定式から求めた係数a,bを用いて式(1)から求 めた動水勾配値である。 ε_r の絶対値が大きいほど実測値 と推定値のずれは大きくなる。

係数*a*は式(6)と式(10)から,係数*b*は式(7)から計算した。**Table 9**に係数*a*,*b*の各式から求めた推定値を示す。

実測値から求めた係数*a*, *b* と式(6)及び式(10)から推定した係数*a*, *b* を用いて動水勾配 – 流速のグラフを描き両者を比較した。式(6)を用いた推定値と実測値の比較結果を Fig.14 に,式(10)を用いた推定値との実測値の比較結果を Fig.15 に示す。Fig.14 及び Fig.15では骨材種別ごとの比較結果を上下一組の5つのグラフで整理した。Fig.14 の(a)5号砕石のグラフを例に説明すれば、上のグラフは空隙率が異なる供試体に対する動水勾配と流速の関係の比較を目的とし、実線が実測、点線が推定値から求めたグラフである。供試体の空隙率が大きくなる順に線の色を赤→青→緑に変化させている。下のグラフは上のグラフに示した推定値の実測値に対する相対誤差を示す。Fig.14 及び Fig.15 から推定式の予測精度について以下の傾向が認められる。

①動水勾配 0.17~1.26 の範囲において,式(6)あるいは式(10)から係数 a を,式(7)から係数 b を求め計算した動水勾配推定値の相対誤差は実測値の

農村工学研究所技報 第 210 号 (2009)

			平均	香わ-Je	実測	割 最大限界率 レイノルズ		$(1-\varepsilon)$	透水試験からの 回帰値		推定值		
供試体	骨材	粒径	粒径	動水	空隙率		$(1-\varepsilon)^2$	$(1-\varepsilon)$			係数a		係数b
記万	1里別	[mm]	[cm]	勾陷	[%]	数 Re	μ/ε	ρ/ε	係数a	係数b	骨材種別	粒径考慮	+ (7)
											式 (6)	式 (10)	氏(7)
C5-22					21.9	320	0.520	74.1	0.142	0.534	0.143	0.188	0.385
C5-32	5号	13-20	1.65		31.5	621	0.134	21.9	0.050	0.093	0.045	0.055	0.089
C5-39					39.1	1167	0.056	10.2	0.021	0.026	0.025	0.027	0.022
C6-21					21.4	122	0.564	80.0	0.202	0.638	0.201	0.226	0.419
C6-30	6号	5-13	0.90		29.9	303	0.165	26.1	0.075	0.109	0.083	0.088	0.113
C6-31					30.6	336	0.150	24.1	0.085	0.091	0.078	0.083	0.102
C7-19					19.1	45	0.841	115.8	0.395	0.812	0.399	0.491	0.986
C7-26	7号	2.2-5	0.38	0.17	25.7	75	0.291	43.6	0.251	0.282	0.234	0.301	0.299
C7-32				1.26	31.5	99	0.134	21.9	0.175	0.163	0.188	0.246	0.091
RC-20					19.8	105	0.742	103.0	0.335	1.091	0.335	0.281	0.549
RC-27		5 15	1.00		26.7	255	0.253	38.4	0.111	0.181	0.126	0.112	0.182
RC-30	KC	5-15	1.00		29.9	341	0.165	26.1	0.093	0.102	0.088	0.081	0.113
RC-33					32.7	405	0.116	19.2	0.067	0.070	0.067	0.065	0.073
S3-10					9.5	4	8.550	1052.4	4.960	10.027	5.049	3.858	9.912
S3-13	3 5	1.4-2.3	0.19		13.1	7	3.006	385.4	2.818	3.216	2.548	1.940	3.556
S3-26	-=+7				26.2	19	0.271	40.9	1.133	0.516	1.313	0.994	0.273

Table 9 透水試験及び推定式から求めた係数 a, b Values of a and b from permeability test and estimated values of a and b from Eq.(6), Eq.(7), Eq.(10).

Fig.15 式 (10), 式 (7) を用いた推定値と実測値の比較と相対誤差 Comparison of estimated hydraulic gradient values from Eq.(10), Eq.(7) and test values with relative error.

± 50%以内に収まる。

- ②5号,6号,RC及び珪砂3号供試体では供試体の空隙率が小さいほど、7号供試体では空隙率が大きくなるほど、推定値の実測値に対する相対誤差は増加する。つまり、5号、6号、RC及び珪砂3号供試体では空隙率の下限に近づくほど、7号供試体では空隙率の上限に近づくほど相対誤差は増加する。
- ③式(6)と式(10)の予測精度の差はほとんど無い。 つまり,骨材粒径と供試体空隙率のみから式(10) を用いて係数 a を推定することができる。

(2) 透水試験流速値に対するモデル式の精度検証

モデル式の予測精度を検証するために,透水試験で 得られた 112 点の実測流速と推定流速値の関係を整理す る。透水試験の実測流速を y, **Table 9**の式(6)を用い て推定した流速を x_A ,式(10)を用いて推定した流速 を x_D とする。推定流速の計算では透水試験で設定した 動水勾配 i を入力値に用いる。yに対する x_A , x_D の回帰 直線を求めると,式(12),(13)が得られる。決定係数 は共に 0.98 以上であった。

 $y = 0.968x_A + 0.0182 \tag{12}$

 $y = 0.9846x_{\rm D} + 0.0086\tag{13}$

yとx_A, yとx_Dの散布図を**Fig.16**, **Fig.17**に示す。 **Fig.16**及び**Fig.17**には式(12)及び式(13)の回帰直線 を実線で表す。**Fig.16** 及び **Fig.17** から実測流速と推定流 速は良く一致することがわかる。式(12),式(13)から, $x_A \approx 0.968$ 倍, $x_D \approx 0.984$ 倍すれば流速推定値から実測 流速のより良い予測値が得られることがわかる。このこ とは,流速推定値 x_A 及び x_D が1~3%程度実測流速を 過小推定する傾向があることを意味する。

流速推定値 x_{A} , x_{D} の予測精度を式 (12), (13)の残 差から検討する。残差とは(実測値 y_i – 推定値 y_i)で表 される量で推定値と実測値のずれを意味する。残差は 推測流量から回帰直線で予測されるyの値の回りに分布 するが,この残差がyの値の回りに一定で分布すると仮 定すれば(等分散性を仮定),残差の標準偏差は式(14) で表される条件付標準偏差Sy/xから求めることができ る(Alfred H-S,Ang ほか, 2007)。

$$S_{y|x} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (y_i - y_i)^2}$$
(14)

ここで,nはデータ数である。式(12),(13)に対する条件付標準偏差を求めると,式(12)では*Sy/x*_A=0.141[cm/s],式(13)では*Sy/x*_D=0.124[cm/s]となり,式(12)の条件付標準偏差がわずかに大きくなる。すなわち,式(12)を用いた方が予測精度はわずかに低下する。回帰直線に沿って残差の分散が一定とすれば,推定流速が大きくなるほど推定流速に対する実測値と推定値のずれの比率は小さくなる。推定流速に対する実測値と推定値のずれの

比率は, 流速の推定値 x_A, x_Dに対する条件付標準偏差 の変動係数により求めることができ, それぞれ, 0.141/ x_A, 0.124/x_Dとなる。条件付標準偏差の変動係数の変化 を Fig.18 に示す。Fig.18 から流速が 0.7cm/s 以上の場合 は変動係数が 0.2 以下, すなわち, 実測値と推定値の

Fig.16 $y \ge x_A$ のプロットと回帰直線 Comparison of discharge velocity measured (y) in the permeability test with one (x_A) estimated by Eq.(6) and Eq.(7).

Fig.17 $y \ge x_D$ のプロットと回帰直線 Comparison of discharge velocity measured (y) in the permeability test with one (x_D) estimated by Eq.(10) and Eq.(7).

Fig.18 推定値(流速)に対する残差の変動係数 Variation coefficient of residual error for estimated discharge velocity.

ずれは推定流速に対して 20%以内に収まり,モデル式 の予測精度は高いと考えられる。一方,流速が 0.7 cm/s 未満の領域では変動係数の値は急激に増加し,流速が 0.25 m/s 以下では 0.5 を越え,予測精度が急激に低下す る傾向を示す。

(3) 他論文の透水試験値を用いた予測精度の検証

本研究以外に実施された POC の透水試験値から求め た流速に対するモデル式の予測精度を検証するために, エココンクリート委員会(1995)が実施した POC の共 通透水試験結果を対象に予測精度の検討を行う。対象と する 10 本の供試体の試験データを Table 10 に示す。た だし,式(1)を用いて試験データを Table 10 に示す。た だし,式(1)を用いて試験データを回帰分析した結果, 式(1)の係数*a*, bが負の値となったデータについては 検討から除外した。また,委員会の試験では使用骨材条 件として最大骨材寸法のみが記述されていたため,最大 骨材寸法 20mmの骨材を5号,13mmを6号,5mmを7 号と同定し整理した。流速については試験データに与え られていないため,動水勾配と透水係数から逆算した。

Fig.19 yと x_A のプロットと回帰直線(他論文データ) Comparison of discharge velocity measured (y) in another permeability test (JCI,1995) with one (x_D) estimated by Eq.(10) and Eq.(7).

Fig.20 yと x_D のプロットと回帰直線(他論文データ) Comparison of discharge velocity measured (y) in another permeability test (JCI,1995) with one (x_D) estimated by Eq.(10) and Eq.(7).

Results of the permeability lest (JCI, 1993) and the values of a and b calculated by regression analysis with JCI data.												
	動水勾配	流速 [cm/s]		ままた両	流速 [cm/s]							
		A1	A2	到尔马已	C1	C2	C3	D1	D2	E1	E2	E3
	0.125	1.00	0.59	0.083	0.38	0.21	0.07	0.25	0.17	0.82	0.31	0.15
	0.250	1.02	0.73	0.167	0.55	0.30	0.11	0.42	0.28	1.12	0.43	0.20
	0.500	1.13	0.83	0.333	0.90	0.47	0.18	0.73	0.47	1.53	0.63	0.30
	0.750	1.20	1.00	0.500	1.10	0.65	0.23	0.95	0.60	1.95	0.75	0.36
	最大骨材寸法 [mm]	20	20	最大骨材寸法 [mm]	13	13	13	5	5	20	20	13
	骨材種別	5号	5号	骨材種別	6号	6号	6号	7号	7号	5号	5号	6号
	空隙率 [%]	33.4	24.7	空隙率 [%]	26.3	21.4	16.6	31	25.6	31.1	22.7	20.1
	係数a	0.038	0.196	係数a	0.113	0.201	0.438	0.190	0.236	0.047	0.127	0.243
	係数 b	0.064	0.238	係数 b	0.187	0.403	0.957	0.152	0.337	0.091	0.326	0.501

Table 10 他機関の透水試験結果と試験データから回帰した係数 *a*, *b* esults of the permeability test (JCI, 1995) and the values of *a* and *b* calculated by regression analysis with JCI data

Fig.21 推定値(流速)に対する残差の変動係数 Variation coefficient of residual error for estimated discharge velocity.

を用いて推定した流速を x_A ,式 (10)を用いて推定した流速を x_D とする。 $y の x_A$, x_D に対する直線回帰式を求めると以下の式 (15)及び式 (16)が得られ、それぞれの直線回帰式に対する条件付標準偏差 $Sy/x_A=0.147$ [cm/s], $Sy/x_D=0.128$ [cm/s]となる。

$$y = 1.094x_A - 0.236 \tag{15}$$

$$y = 1.114x_{\rm D} - 0.206 \tag{16}$$

Fig.19 に $y \ge x_A$ の散布図と回帰直線を,**Fig.20** に $y \ge x_D$ の散布図と回帰直線を示す。決定係数は式 (15), (16) 共に約 0.94 であり、自ら実施した室内透水試験に対す る結果に較べるとやや相関は低下した。式 (15), (16) の傾きはそれぞれ、1.094, 1.114 となり、推定値は約 10%程度実測値を過大に評価する傾向が見られた。

流速の推定値 x_A, x_Dに対する条件付標準偏差の変動 係数の変化を Fig.21 に示す。変動係数の変化の傾向は Fig.18 とほぼ等しく,エココンクリート委員会のデータ についても提案した推定式は本節(2)で述べた室内透 水試験と同程度の予測精度を有すると考えられる。

VI 結 言

本研究では、骨材及び空隙率を変化させた POC 供試

体に対して動水勾配を変化させた定水位透水試験を行い、動水勾配と供試体を通過する流れの流速の関係を明らかにした。さらに、Ergunの圧力降下式に基づき POC の空隙率及び骨材粒径から動水勾配を求める推定式を作成した。本実験の範囲内で得られた知見を以下に示す。

 5 種類の骨材を用いて空隙率 10 ~ 39%の範囲の POC 供試体を作成し、動水勾配 0.17 ~ 1.26 の範囲 で定水位室内透水試験を行い、供試体の動水勾配と 流速の関係を求めた。その結果 POC の動水勾配 *i* と 流速 v[cm/s]の関係は式(1)に示される 2 次関数で 表せることがわかった。

$$i = av + bv^2 \tag{1}$$

 Ergun の式に基づき式(1)の係数 *a* を POC 供試体の空隙率 ε で表す推定式(6)を作成した。係数 *k*₁, *k*₂ は骨材種別ごとに決定される値である。骨材種別ごとの値を Table 7 に示す。

$$a = k_1 + k_2 \mu \frac{(1-\varepsilon)^2}{\varepsilon^3} \tag{6}$$

 式(6)を改良し係数 a を POC 供試体の空隙率 ε 及 び平均骨材粒径 D[cm]で表す推定式(10)を作成し た。式(10)の適用範囲は D が 0.19~1.65cm,供 試体の空隙率が概ね 20~35%の範囲である。

$$a = 0.0245D^{-2.171} + 0.346\,\mu \,\frac{(1-\varepsilon)^2}{\varepsilon^3} \tag{10}$$

 4) Ergun の式に基づき式(1)の係数bをPOC供試体の空隙率εで表す推定式(7)を作成した。係数l₁, l₂は平均骨材粒径により決定される値である。値については Table 8 に示す。

$$b = l_1 + l_2 \rho \frac{(1-\varepsilon)}{\varepsilon^3} \tag{7}$$

5) 動水勾配 0.17~1.26の範囲においては、動水勾配の 推定に式(6) あるいは式(10)を用いても推定値 の相対誤差は実測値の±50%以内に収まる。相対誤 差は, Table 7 の空隙率の範囲に対して,5号,6号, RC及び3号珪砂供試体では空隙率の下限に近づく ほど,7号供試体では空隙率の上限に近づくほど増 加する。

6)式(6),(7)及び(10)を用いた推定値の実測流速 に対する推定精度は,推定流速が0.7cm/s以上の領 域では,実測流速と推定流速のずれが推定流速の 20%以内に収まるが,流速が0.25m/s以下の領域で は実測流速と推定流速のずれは推定流速の50%を越 える。流速が0.25m/s以下の領域における適用に関 しては注意が必要である。

なお、本研究は、農林水産省委託プロジェクト農林水 産バイオリサイクル研究(平成14~18年度)で得られ たデータに新たな検討を加え取りまとめた結果であるこ とを付記する。

参考文献

- Alfredo H-S.Ang, Wilson H, Tang, 監訳(伊東 學, 亀田浩行)(2007):土木建築のための確率・統計の 基礎, pp.380-391.
- 2) 井上慶一・大塚寛治・村上則幸・杉本光穂・黎 文 (2003):大豆の高品質乾燥調整に関する研究,中央

農研研報, pp.1-49.

- 大友鉄平・大塚浩司・武田三弘 (2006):ポーラ スコンクリートの三次元的空隙性状に関する研 究,東北学院大学工学部研究報告第40巻第1号, pp.65-71.
- 小出章二・田村 敏・内野敏剛・菅原祐二・田中 史彦・K.S.P. アマラトゥンガ (1996):小麦充填層 の通風抵抗に関する研究,農業機械学会誌 58 (6), pp.111-117.
- 5) 松川 徹・玉井元治・杉野 守・芦田 馨 (1996): 緑化コンクリートの空隙性状, コンクリート工学年 次論文報告集, Vol.18, No.1, pp.999-1004.
- 6) 松尾真一郎・木暮敬二 (1970):砕石の透水性に関 する実験,土と基礎 18-2 (144), pp.5-10.
- 7) 三輪茂雄 (1981): 粉体工学通論, pp.88-91.
- 8)森井俊広・立石卓彦・佐田豊和・小林考至(2000): ロックフィルを通る流れの非線形水頭損失特性,農業土木学会論文集 No.206, pp.199-.207.
- 9) (社日本コンクリート工学協会 (1995):エココンク リート研究委員会報告書, pp.59-63.
- 10) (社日本コンクリート工学協会 (2003):ポーラスコンクリートの設計・施工法の確立に関する研究員会報告書, pp.182-185.

Relationship between Hydraulic Gradient and Discharge Velocity in Flow through Porous Concrete

ASANO Isamu, HAYASHIDA Yoichi, MASUKAWA Susumu and TAGASHIRA Hidekazu

Summary

The relationship between hydraulic gradient and discharge velocity in flow through a porous concrete (POC) has been investigated on the laboratory permeability test. The conditions for the laboratory permeability test were as follows;POC specimen:5 kinds of aggregates used, hydraulic gradient: 0.17~1.26,void contents of POC specimen:10~39%. A model equation is proposed for estimating the relationship between hydraulic gradient and discharge velocity from the results of laboratory permeability test. The main results obtained are shown below. The proposed equation expressed a good agreement to the experimental results.

(1) It was found that the relationship between hydraulic gradient *i* and discharge velocity v[cm/s] in flow through a porous concrete(POC) is considered to be a quadratic function following Eq.(1) from the results of laboratory permeability test.

$$i = av + bv^2 \tag{1}$$

(2) Applying the Ergun equation to above Eq.(1), we found the following estimate equations Eq.(6) and Eq.(7) for the coefficient a of Eq.(1).

$$a = k_1 + k_2 \mu \frac{(1-\varepsilon)^2}{\varepsilon^3}$$
(6)

$$a = 0.0245D^{-2.171} + 0.346 \,\mu \,\frac{(1-\varepsilon)^2}{\varepsilon^3} \tag{10}$$

where, ε : void contents of POC,*D*: average aggregate diameter[cm], k_1, k_2 :these factors are given **Table 7** for 5 kinds of the aggregates.

(3) Applying the Ergun equation to above Eq.(1), we found the following estimate equations Eq.(7) for the coefficient b of Eq.(1).

$$b = l_1 + l_2 \rho \frac{(1-\varepsilon)}{\varepsilon^3}$$
(7)

where, ε : void contents of POC, l_1, l_2 : these factors are given **Table 9** for average aggregate diameter.

(4) The hydraulic gradient values estimated by the equation Eq.(6) or Eq.(10) with Eq.(7) were within almost less than 50% relative errors.

Keywords: Porous concrete, Nonlinear flow, Head loss, Permeability test, Hydraulic Gradient, Discharge velocity, Ergun equation