研究ノート

大腸菌におけるゲノム重複を介した多剤耐性化

本山 志織、ワナシリ・ワナラット、稲岡 隆史*

国立研究開発法人 農業・食品産業技術総合研究機構 食品総合研究所 〒305-8642 茨城県つくば市観音台2-1-12

Multidrug tolerance mediated by genomic segmental amplification in *Escherichia coli*

Shiori Motoyama, Wannasiri Wannarat, Takashi Inaoka*

National Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan

Abstract

A multidrug efflux pump, AcrAB-TolC, contributes to multiple antibiotic resistance (Mar) phenotype in *Escherichia coli*. In this study, we investigated multidrug tolerance mediated by genomic segmental duplication of *acrAB* locus in *E. coli*. In a strain K-12 W3110, 3.8% (8 of 208) of ampicillin-resistant colonies carried the multiplicated copy of *acrA* gene, thereby exhibiting multidrug-resistance phenotype. In contrast, in a strain O157:H7 MY-29, we could not isolate such mutant. All isolated Mar strains were found to carry the same 416 kb-genomic amplicon. Sequencing analysis showed that the amplified regions were bordered by insertion sequence (IS), IS5. These results suggest that *E. coli* gene amplification occurs largely between directly oriented homologous IS elements. Thus, our results suggest that the genomic amplification-mediated Mar phenotype depends on the genetic background.

Keywords: genomic amplification, multidrug tolerance, Escherichia coli

緒言

多剤排出ポンプは化学構造の異なる多種多様な薬剤 を細胞外へと排出するトランスポーターであり、多剤 耐性を引き起こす要因の一つである¹⁾²⁾. AcrAB-TolC システムは大腸菌において最も良く研究された多剤 排出ポンプであり、多剤耐性大腸菌の多くはAcrAB-TolCを過剰生産していることが知られている³⁾.

AcrAB-TolCシステムは3つのタンパク質によって 構成されている.AcrBは内膜に局在する基質認識部 位であり⁴⁾,TolCは外膜チャネルとして機能してい る⁵⁾.ペリプラズムに存在するAcrAはAcrBタンパク 質と複合体を形成し,AcrBとTolCチャネルを連結す る役割を担っている. TolCは他の排出ポンプの外膜

チャネルとしても機能しており,必要に応じてAcrAB 複合体と結合すると考えられている⁶⁾.これら3つの タンパク質は*acrABとtolC-ygiAB*という2つの異なる オペロンにコードされており,これら遺伝子の発現は MarAやSoxS, Rob等の転写因子により制御されてい る⁷⁾⁸⁾.これまでに同定された大腸菌の多剤耐性変異 の多くは,*acrABやtolC-ygiAB*の発現を増大させるも のである.

細菌が薬剤耐性を獲得する遺伝的要因には、突然変 異のほか,耐性遺伝子を含むゲノム領域の多コピー化 (ゲノム重複)がある.このゲノム重複は,最初の2 コピー化ステップとその後の多コピー化ステップの2 段階のステップによって進行すると考えられている⁹⁾. 最初の2コピー化ステップはRecAに依存した相同組換 え又はRecAに依存しない非相同組換えのいずれかに よって進行するが、多コピー化ステップでは2コピー 化ステップにより生じた相同配列間でRecAに依存した 相同組換えにより進行すると考えられている.このよ うなゲノム重複を介した薬剤耐性化においては、環境 中の選択圧により生存に適したコピー数の耐性遺伝子 を有する細胞が選抜されるため、ゲノム中の遺伝子コ ピー数は環境変化に応じて増減することになる.

細菌の薬剤耐性変異に関する膨大な研究例と比較し て、ゲノム重複を介した薬剤耐性に関する研究は少な く、その知見は極めて乏しい、そこで我々は、ゲノム 重複を介した細菌の薬剤耐性機構について調査して きた. その結果、グラム陽性菌の枯草菌では、2コ ピー化ステップのほとんどが非相同組換えによりラン ダムに起こるのに対し、グラム陰性菌のサルモネラ 菌においては2コピー化ステップのほとんどが挿入 配列 (IS) 間での相同組換により起こることが判明し た¹⁰⁾¹¹⁾. 大腸菌においては、これまでに報告されてい るゲノム重複の多くが相同なISで挟まれた領域で起 こっていることから、サルモネラ菌と同様に最初の2 コピー化ステップのほとんどが相同組換えにより起 こると考えられる. 大腸菌 K-12 W3110株ゲノムでは, acrAB領域に多数のISが存在しており, acrAB領域が ゲノム重複により多コピー化し易い可能性がある. 一 方, O157:H7 Sakai株ゲノムでは, acrAB領域にISは わずかしか存在せず,W3110株と比較して acrAB 領域 のゲノム重複頻度は低いと予想できる、本研究では、 W3110株および毒素非生産性O157:H7 MY-29株を用い て、大腸菌における acrAB 領域のゲノム重複を介した 多剤耐性獲得について検討を行なった.

実験材料および方法

1. 使用菌株

大腸菌K-12W3110株および毒素非生産性O157:H7 MY-29株を用いた.

アンピシリン耐性株は、薬剤を含まないLB液体培 地で3-4時間培養後、適当な濃度のアンピシリンを含 むLB寒天培地上に適量塗布することによって取得し た.出現した耐性菌は同じ濃度のアンピシリンを含む LB寒天培地上に継代培養した.

2. 抗生物質耐性度の測定

大腸菌 acrAB 重複株を様々な濃度の抗生物質を含む LB 寒天培地上に塗布し,抗生物質を含まない培地で の生育と比較して増殖阻害が起こる最低濃度を最小発 育阻止濃度(MIC)とした.抗生物質にはアンピシリ ンのほかクロラムフェニコール,テトラサイクリン, エリスロマイシン,カナマイシン,ノボビオシン,セ フォタキシム,およびリファンピシンを用いた.

3. ゲノム DNA 調製

ゲノム DNA の調製には、実験に応じて 2 通りの調 製法を用いた.コロニーから直接ゲノム DNA を調製 する場合には、ゲノム DNA 調製試薬インスタジーン (バイオラッド社)を用いて調製した.培養液からゲ ノム DNA を調製する場合には、スクリーニングに使 用した濃度のアンピシリンを含む LB 培地で一晩培養 した培養液を遠心し、上清を除去後、一般的なゲノム DNA 調製法であるフェノール/クロロホルム抽出法 により調製した.

4. 定量 PCR によるコピー数定量

遺伝子コピー数の定量にはアプライド・バイオシ ステムズ社のリアルタイム PCR装置7300を使用した. PCR 反応は、THUNDERBIRD SYBR qPCR Mix (東洋 紡)を使用し、20 μL 反応液に各プライマーを終濃度 300 nMになるよう添加して行なった.コントロール遺 伝子としてリボソームタンパク質S10をコードする rpsJ 遺伝子を用いた.使用したプライマーは表1に示した.

結果

acrAB 遺伝子領域のコピー数変動 大腸菌 K-12 W3110株のアンピシリンに対する MIC

Gene	Forward primer $(5' \rightarrow 3')$	Reverse primer $(5' \rightarrow 3')$
acrA	AGCGGTCGCATTGGTAAG	TTTCAGGCGCAGGAAGTC
ampC	CGCCTCTTGCTCCACATT	GTGTGACGGGCTGCTTTT
ampG	GGTGAAGTAGGCGTGGTT	TCGACAGCAGCCAGTAAC
argF	AGTTCCTGCACTGTCTGC	CGACTCAAACACCTCGTC
cysS	GGGATGGTGATGGTTGAC	GCCTGCTTCAGGTTCTCT
gltI	GTGGGTTACTCGCAGGAT	CGACGTTGTTGGTGGTAG
lnt	CGATAATGGGCGTGGAAG	TCTCCGGTTGTGGGGGTAA
mmuP	GCTGGGTTCGAGCTTTAC	ACCAGCGAGAACCAGAAC
ompT	GAGGCCGAAAAGTCAGTC	CATCCAGTCCTGATCGAC
ribD	CCACATGCCGAAGTACAC	CTGCGGGTTAGGATCTTG
rpsJ	TCCGTATCCGCCTGAAAG	CGCGTCTTTGTTGACGTG
sbcC	CGACACGTCAGCAAGAAG	GCTGCTGGCTGTGTAATG
tauA	AGACGGCAAGGTGTTGAC	CTGTTTCAGCCACACGTC
yahD	CAACCATGTAGGCTGGAC	CCTGCGGCAATCAGTAAC
ybbJ	GAGTGGCAAGGGGTAATG	GTTGACCAGCGGAGATTC
ybdM	GACCTGTCTGGAAGGTACG	CTGTCCATTCCCAGCTCT
ykfC	AAGGCACCAAAGCACAGG	CACTCGCATCTCGCCATA

表1. 本研究で使用したプライマー

は2µg/mLであり、4µg/mLのアンピシリンを含む LB培地上では耐性株が約10⁻⁶-10⁻⁵の頻度で出現する. 大腸菌はβ-ラクタマーゼおよび多剤排出システム AcrAB-TolCを有しており、これら遺伝子のいずれか の重複はアンピシリン耐性を付与すると考えられる. そこで大腸菌W3110株を用いてアンピシリン4µg/mL を含むLB培地上で耐性株を選抜し、β-ラクタマーゼ をコードする ampC 遺伝子および acrA 遺伝子コピー 数を定量した.アンピシリン感受性の野生株36株を 用いた対照実験ではacrA遺伝子のコピー数は0.95± 0.1, ampC遺伝子のコピー数は1.0±0.10であった. ま た, それらの分布は, acrA遺伝子が0.77-1.2, ampC 遺伝子が0.89-1.2の範囲内であった(図1, 白棒グラ フ). これに対して、調査したアンピシリン耐性株94 株中acrA遺伝子では27株(31%), ampC遺伝子では 4株(4.3%)においてコピー数が1.5以上となってい た(図1, 黒棒グラフ). これらの結果は、アンピシ リン耐性株において、acrA遺伝子領域のコピー数が ampC遺伝子領域よりも変動し易いことを示唆してい る. 多剤排出システム AcrAB-TolCの増加は、他の抗 生物質や界面活性剤、有機溶剤等の抵抗性を増大させ る為、アンピシリンによる選択圧は大腸菌の多剤耐性 化の要因と成り得る.

2. acrAB遺伝子重複株の分離

大腸菌K-12 W3110株を新たにアンピシリン4µg/mL

図1. アンピシリン耐性株における ampC および acrA 遺伝子コピー数の変動

アンピシリン耐性株の ampC(A) および acrA(B) 遺伝子 のコピー数の分布(黒色棒グラフ). 白色棒グラフは野生 株におけるそれぞれのコピー数の分布を示す. を含むLB培地上に塗布し、合計208株のアンピシリン 耐性株を取得した.一方、毒素非生産性大腸菌O157: H7 MY-29はアンピシリンに対する感受性がW3110株 よりわずかに高く、3µg/mLのアンピシリンを含む培 地上でアンピシリン耐性株を選抜可能である.そこ で、大腸菌O157:H7 MY-29株からも合計205株のアン ピシリン耐性株を取得した.得られた耐性株のacrA 遺伝子のコピー数を定量したところ、W3110株由来の アンピシリン耐性株208株のうち8株(3.8%)におい てacrA遺伝子コピー数が2.0-2.5コピーとなっていた. しかしながら、O157:H7 MY-29株由来のアンピシリン 耐性株205株の中には、acrA遺伝子重複株は含まれて いなかった.そこで、W3110株由来のacrAB重複株8 株(No. 5, 21, 39, 47, 48, 51, 54, 58)について、 さらなる解析を行なった.

3. acrAB 重複領域の同定

得られた8株の遺伝子重複領域を同定するため, acrAB遺伝子領域の周辺遺伝子のコピー数を定量した (図2).その結果,8株全てにおいて重複領域の両 末端にIS5が存在しており,396遺伝子を含む約416kb の領域が重複していることが判明した.また,この重 複領域の左側末端部分では、中心部分よりもコピー数 が高くなる傾向があった(図2).これについては、 原因は明らかではないが、この領域には4つのIS1が 同方向に並んでおり、末端部分でさらなる遺伝子重複 を起こしている可能性も考えられる.これらの結果か ら、大腸菌における遺伝子重複の2コピー化ステップ の多くは、サルモネラ菌と同様にIS等の相同配列を 介して生じると考えられる.枯草菌においては、非相 同組換えが主要な2コピー化ステップであり、ゲノム 重複がランダムに生じるのに対し、大腸菌やサルモネ ラ菌においては、ゲノム重複の多くが相同配列で挟ま れた特定の領域で生じやすくなっているものと推察で きる.すなわち、大腸菌やサルモネラ菌においては、 ゲノム重複を介した薬剤耐性株の出現頻度がゲノム構 造に大きく依存していると考えられる.

4. acrAB重複株の抗生物質耐性

8株のacrAB重複株の抗生物質耐性を調べた結果, アンピシリンの他,クロラムフェニコールやテトラサ イクリン,エリスロマイシン,セフォタキシム,リ ファンピシンに対する抵抗性が増大し,多剤耐性を 獲得していた(表2).興味深いことに,得られた

Strains	Copy number (relative ratio to rpsJ gene)														
	ykfC	mmuP	argF	yahD	tauA	sbcC	ribD	ampG	acrA	ybbJ	cysS	ompT	ybdM	gltl	Int
4A-21	1.1	3.2	3.3	2.3	2.2	2.1	2.0	2.2	2.3	2.1	2.1	2.3	2.2	2.2	0.79
4A-39	1.2	4.4	3.4	2.4	2.4	2.4	2.3	2.4	2.0	2.4	2.5	2.7	2.5	2.6	0.84
4A-47	0.83	2.9	3.7	2.6	2.7	2.6	2.5	2.6	2.5	2.4	2.6	2.8	2.6	2.5	0.64
4A-48	1.1	3.0	4.1	2.6	2.8	2.5	2.6	2.6	2.5	2.8	2.7	3.2	2.8	2.9	0.68
4A-51	1.1	3.1	3.9	2.5	2.8	2.6	2.5	2.5	2.5	2.9	2.7	3.1	2.7	2.9	0.63
4A-54	1.2	3.2	3.6	2.5	2.7	2.6	2.5	2.5	2.4	2.4	2.5	2.7	2.4	2.2	0.69
4B- 5	1.0	2.8	3.2	2.6	2.4	2.4	2.3	2.5	2.5	2.3	2.5	2.4	2.4	2.5	0.61
4B-58	0.83	3.1	3.0	2.6	2.5	2.4	2.6	2.5	2.4	2.4	2.5	2.4	2.4	2.4	0.52

図2. acrA遺伝子重複株の重複領域の同定

上段はacrA遺伝子周辺の大腸菌W3110株ゲノムを表す。ゲノム重複を起こした領域を赤線,重複領域末端の挿入配列(IS5) は青字で示した。矢印は遺伝子の方向を表す。下段の表は,acrA遺伝子重複株におけるacrA遺伝子周辺の各遺伝子コピー数. 赤字は、コピー数が2以上のものを示す. acrAB遺伝子重複株の重複領域は同一であるにもかか わらず,薬剤感受性はそれぞれわずかに異なることが わかった.例えば,カナマイシンに対してはNo.39だ けが耐性を示し,ノボビオシンに対しては8株中6株 で感受性が高くなっていた.これらの原因については 不明であるが,ゲノム中に突然変異等が生じている可 能性もある.

考察

本研究では、アンピシリンによる選択圧により大腸 菌がacrAB領域のゲノム重複を介して多剤耐性化し得 ることを明らかにした.大腸菌K-12 W3110株および O157:H7 MY-29株を用いて、acrAB遺伝子重複による 多剤耐性化頻度を比較した結果、W3110株では208株 中8株(3.8%)においてacrAB遺伝子重複が生じてい たが、O157:H7 MY-29株では分離した205株中にacrAB 遺伝子重複を見出すことはできなかった.この結果 は、大腸菌の遺伝子重複がIS等の相同配列に大きく 依存しており、ゲノム構造によって遺伝子重複の出現 頻度が異なることを示唆するものである.

図3に示すように、大腸菌K-12W3110株のゲノム ではacrAB領域に20個のISが存在している.これらIS のうち、IS間での相同組換えを介したゲノム重複によ りacrABのコピー数を増加させ得る組み合わせは3通 り存在し、予想されるアンプリコンの大きさは252kb (アンプリコン1)および302kb (アンプリコン2), 416kb (アンプリコン3)である(図3A).本研究 で取得したacrAB遺伝子重複株は全てアンプリコン3 が2~3コピーに重複したものであったが、Nicoloff らは大腸菌K-12株由来の多剤耐性株においてアンプ リコン1を2コピー有する株を分離し、報告してい る¹²⁾.また、彼らは*acrAB*近傍にある*lon*遺伝子にト ランスポゾンの標的配列が存在しており、*lon*遺伝子 内に新たにISが挿入された後、*lon*::ISとIS186間(約 149 kb)でゲノム重複を引き起こした株についても報 告している¹³⁾.我々の実験では、*lon*遺伝子内に新た にISが挿入された株を見出すことはできなかったが、 IS挿入を介した遺伝子重複頻度は、既存のIS間で起 こる遺伝子重複の頻度と比較して低いものと考えられ る.

一方, O157:H7 Sakai のゲノムでは, acrAB 領域に は5個しかIS が存在しておらず, ゲノム重複により acrAB のコピー数を増加させ得る組み合わせは543 kb のアンプリコン1のみである(図3B). 今回使用し たMY-29株のゲノム配列は不明であるが, Sakai 株と 類似していると考えられることから, ゲノム構造の違 いが acrAB 遺伝子重複株の出現頻度に影響しているも のと推察できる.

大腸菌 O157:H7 Sakai 株はゲノム中の異なる位置に 2つの毒素遺伝子(*stx1*および*stx2*)を有している. これら毒素遺伝子の周辺では*acrAB*領域とは異なり, 多くのISが存在していることから,O157:H7 Sakai株 においては,*acrAB*領域よりも毒素遺伝子周辺領域が 遺伝子重複を起こしやすい可能性がある.毒素遺伝子 の多コピー化と食中毒との関連は不明ではあるが,今 後検討する必要があるだろう.

表2.大腸菌W3110由来acrA 重複株の抗生物質感受性

Strain	acrA copy	MIC (µg/mL)								
	number	AMP	СР	TC	EM	KM	NV	CTX	RIF	
W3110	1	2	4	1.5	60	1	200	< 0.03	10	
5	2.5	4	10	2	80	1	125	0.03	17	
21	2.3	4	10	2	70	1	200	0.05	18	
39	2	4	10	2	70	3	150	0.05	20	
47	2.5	4	10	2	70	1	125	0.03	19	
48	2.5	4	10	2	70	1	125	0.03	20	
51	2.5	4	10	2	70	1	150	0.03	18	
54	2.4	4	10	2	70	1	200	0.03	20	
58	2.4	4	10	2	80	1	125	0.05	18	

NV:ノボビオシン, CTX:セフォタキシム, RIF:リファンピシン

図3. acrAB領域の比較と予想される重複領域

大腸菌K-12 W3110(A)及びO157:H7 Sakai (B)におけるacrAB領域のISと予想される重複領域、矢印は遺伝子の方向を表す.

参考文献

- Nikaido, H. Antibiotic resistance caused by Gramnegative multidrug efflux pumps. *Clin Inf Dis* 27, S32-41 (1998)
- Li, X. Z., Plésiat, P., and Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. *Clin Microbiol Rev* 28, 337-418 (2015)
- Okusu, H., Ma, D., and Nikaido, H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of *Escherichia coli* multiple-antibiotic -resistance (Mar) mutants. *J Bacteriol* 178, 306-308 (1996)
- Murakami, S., Nakashima, R., Yamashita, E. and Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. *Nature* 419, 587-593 (2002)
- Koronakis, V., Eswaran, J., and Hughes, C. Structure and function of TolC: the bacterial exit duct for proteins and drugs. *Annu Rev Biochem* 73, 467-489

(2004)

- 6) Touzé, T., Eswaran, J., Bokma, E., Koronakis, E., Hughes, C. and Koronakis, V. Interaction underlying assembly of the *Escherichia coli* AcrAB-TolC multidrug efflux system. *Mol Microbiol* 53, 697-706 (2004)
- 7) Martin, R. G., Gillette, W. K. Rhee, S. and Rosner, J. L. Structural requirements for mar box function in transcriptional activation of *mar/sox/rob* regulon promoters in *Escherichia coli*: sequence, orientation and spatial relationship to the core promoter. *Mol Microbiol* 34, 431-441 (1999)
- White, D. G., Goldman, J. D. Demple, B. and Levy, S. B. Role of the *acrB* locus in organic solvent tolerance mediated by expression of *marA*, *soxS*, or *robA* in *Escherichia coli*. *J Bacteriol* **179**, 6122-6126 (1997)
- Sandegren, L., and Andersson, D. I., Bacterial gene amplification: implications for the evolution of antibiotic resistance, *Nat. Rev. Microbiol.* 7(8), 578-588 (2009)

- Wannarat, W., Motoyama, S., Masuda, K., Kawamura, F. and Inaoka, T. Tetracycline tolerance mediated by gene amplification in *Bacillus subtilis*. *Microbiol* 160, 2474-2480 (2014)
- 11) Lee, K., Kusumoto, M., Sekizuka, T., Kuroda, M., Uchida, I., Iwata, T., Okamoto, S., Yabe, K., Inaoka, T. and Akiba, M. Extensive amplification of GI-VII-6, a multidrug resistance genomic island of *Salmonella enterica* serovar Typhimurium, increases resistance to extended-spectrum cephalosporins. *Front Microbiol* 6, 78 (2015)
- 12) Nicoloff, H., Perreten, V. and Levy, S. B. Increased

genome instability in *Escherichia coli lon* mutants: Relation to emergence of multiple-antibiotic-resistant (Mar) mutants caused by insertion sequence elements and large tandem genomic amplifications. *Antimicrob Agents Chemother* **51**, 1293-1303 (2007)

13) Nicoloff, H., Perreten, V., McMurry, L. M. and Levy,
S. B. Role for tandem duplication and Lon protease in AcrAB-TolC-dependent multiple antibiotic resistance (Mar) in an *Escherichia coli* mutant without mutations in *marRAB* or *acrRAB*. *J Bacteriol* 188, 4413-4423 (2006)