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I Introduction

Around 40% of farmland in Japan is located in the sloped land of mountainous and semi-mountainous areas. In the

landslide areas of the Tertiary or Schist layers, much farmland has been historically developed since ancient times,

because there have been fertile clayey soils in the crushed zone of these layers. Also, it has been easy for farmers not

only to get irrigation water in many places but also to cultivate the land in sloped areas, even though landslide disasters

have often occurred. Therefore, slope stability is an important subject for farmland conservation and reclamation in

Japan. The author investigated slope stability analysis for the prevention and control of landslides, and/or for the design

of embankment construction in sloped areas.

A large number of limit equilibrium methods of slices have been proposed and utilized for slope stability analysis.

The Ordinary method of slices and the Simplified Bishop method (Bishop, 1955) are commonly used for slip circles.

The Fellenius method is widely used for the analysis of landslides in Japan. The Janbu method (Janbu, 1954) is also
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well known and is often used for the analysis of slopes with a slip surface of general shape. The Nonveiller method
(Nonveiller, 1965), which is introduced from the moment equilibrium and extended to slip surfaces of general shape, is
also convenient for the analysis of landslides.

On the other hand, a general limit equilibrium method of slices was developed by Morgenstern, N.R. and Price,
V.E.(1965). This method satisfies force and moment equilibrium conditions and is often used for case histories of
landslides all over the world. The Spencer method (Spencer, 1967), which assumes parallel inter-slice forces, is one
of the general limit equilibrium methods of slices for a slip circle. This method can be extended easily to slip surfaces
of general shape by the modified angle of inter-slice forces (Spencer, 1969). Spencer succeedingly published another
general limit equilibrium method of slices for slip surfaces of general shape (Spencer, 1973), which assumes each
variable angle of inter-slice force between slices. These methods, which assume inter-slice force or factors, such as
A -f{x) of the Morgenstern-Price method or 6i, Q of the Spencer methods, are practical and useful in converging
computations. Fredlund and Krahn (1981) compared some limit equilibrium methods of slices and explained clearly the
relationship between these methods.

In this paper, some limit equilibrium methods of slices are reviewed. Also, a general limit equilibrium method of slices
is introduced (Furuya, 1986) and is examined by comparing with the Morgenstern & Price and the Spencer methods. The
moment equation of this method is derived from the equilibrium of resultant vertical and horizontal inter-slice forces.
Methods to calculate pore water pressure are also discussed as related to buoyancy under steady seepage flow conditions
(Furuya, 1985).

In addition, this paper was rewritten from [ Examination of Slope Stability Methods of Analysis(in Japanese) | reported

in the symposium of the Japan Landslide Society in 1998.
Il Forces acting on a slice
Figure 1 shows the forces acting on a slice of a slip surface and Fig. 2 shows a polygon of those forces. The method of

calculation for pore water pressure by u, Pw, Psi, Psi+1, is defined as the total pore water pressure method (Yamagami
and Ueda, 1982) in chapters 3, 4 and 5 of this paper.

H T E'i
0 ‘»'}l

H T;;::Xi

2 —

lli.;lr Psi

Fig. 1 Forces acting on a slice of a slip surface.

Notation

W = total weight of slice of width b and height H
« = angle of base of slice

3 = angle of upper of slice

U = force due to pore water pressure on base of slice
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u = pore water pressure, [ = length of base of slice, U = ul
P = total force normal to base of slice
p' = effective force normal to base of slice, P= p'+ul
¢' = cohesion with respect to effective stress
¢'m = mobilized cohesion: c¢’/F, F = factor of safety
¢'= angle of shearing resistance with respect to effective stress
¢'m = mobilized angle of shearing resistance. tan ¢'m = (tan ¢')/ F
S = total shear force available
Sm = mobilized shear force on base of slice
Sm={cl+P—ultan ¢'}/F
Pw = force due to water pressure on upper part of slice
Psi, Psi+1=forces due to water pressure on both sides of slice
E'i, E'ix1=horizontal inter-slice forces with respect to effective stress on both sides of slice
X'i, X'i+1=vertical inter-slice forces with respect to effective stress on both sides of slice
Zi, Zi+1 = resultant inter-slice forces of E'i, X'i and E'i+1, X'i+1
0i, 0 i+1=angle determining slope of inter-slice force Zi, Zi+1
Xi=E'itan i, X'i+1=E'i+1tan § i+1
Q = resultant inter-slice forces of Zi and Zi+1
0 = angle of inter-slice forces Q

K = Seismic coefficient to account for a dynamic horizontal force. Acting point is assumed at point H/2

ul

KW Psi+1

Fig. 2 Polygon of forces acting on a slice.

Il Force and moment equilibrium conditions and methods of slope stability analysis

All limit equilibrium methods of slices for slope stability analysis are introduced from force and/or moment equilibrium

conditions based on assumptions concerned with inter-slice force, because the number of equations does not correspond

to the unknowns and assumptions.

Equilibrium conditions are as follows:
(D Force equilibrium in the vertical direction (or in the direction perpendicular to base of slice)
(2 Force equilibrium in the horizontal direction (or in the direction parallel to base of slice)

(3) Moment equilibrium about a common point

1 The Ordinary or The Fellenius method

The following equation of the Ordinary or Fellenius method is widely used for the computation of factors of safety in

the field of practical civil engineering in Japan.

2{ ¢'lH(Weos @ —ul) tan ¢ '}
F= :
> Wsin a
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Forces acting on a slice are shown in Figs. 1 and 2. The computation considers the pore water pressures acting on the
upper, both sides and the base of the slice, and seismic coefficient. The normal force on the base of the slice is derived

from the summation of forces perpendicular to the base of the slice (Fig. 2).
Wcos a 4 (Psi—Psi+1—KW) sina —Qsin(a — 0 )= p'—ulTPw cos( B — a) = (0  croeermerrerenencen. 2

The inclination of resultant inter-slice force is assumed to be parallel to the base of the slice in the Ordinary method,

thus, sin( @ — @) equals zero. Therefore, the following equation is derived.
P =Wcos a +(Psi—Psis1—KW) Sin @ —ul+Pw coS(3 — @)  ++roeeressmmeemmsmmtemiieteniiitiiie i (3)
The following equation is also derived from the summation of forces parallel to the base of the slice (Fig. 2).
Pwsin(f — a)+Sm=Wsina +0cos(a@ — 0 )—(Psi—Psi+1 —KW) o8 @ *++++sssrrrersmmsseesssssi. 4)
Substituting (3) into (4), the equation for factor of safety is derived as follows:

oo BRI sin@ng') ) 5
~ Y{Wsina +[J]cos @ —Pwsin( B — a ) + QI ®

where [K]=Wcos a + Pwcos(f — a)

[JI=KW + Psi — Psi+1

2 The Janbu's method
Two methods, the Simplified and the Rigorous methods, are included in the Janbu's methods (Janbu, 1954). The normal
force p’ on the base of each slice is derived from the summation of vertical forces (Fig. 2). The computation includes the

pore water pressures acting on the upper, both sides and the base of the slice, and seismic coefficient.

W+X'is1 —X'i + Pwcos /9 = (p' + ul> COS @ & S SIN @@ #vevveeereeemeeeseeenetttiiiiiiii s (6)

From equation (6),

[M]— ¢'mlsin «
p’ T e teececsscsecsccecsecsccscssesscsecseseesecssssecsesecsecssseessssessecsssessssssssess0s0 0 (7)
ma
where [M] =W+ X'is1—X'i+Pwcos 3 —ul cos a
and Ma =COS a Ttan ¢'m sin a

The equation for factor of safety is derived as follows from the summation of horizontal forces (Fig. 2).

D ;
T X(p'tul)sina + XKW —X[Wa] ®)

where  [Wa] = Pwsin 3 +(Psi —Psi+1 + Ei—Ei+1)

The summation of inter-slice force must cancel in equation (8) of the simplified Janbu method and the factor of safety
can be computed by iteration. Correction factor fo is prepared as relating to cohesion, angle of internal friction, and shape

of failure surface.
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In the Janbu's rigorous method, the acting point of inter-slice force is assumed to be //3 H from the bottom of the slice
corner. Xi and Xi+/ are evaluated from the conditions of moment equilibrium in each slice about the middle point of the

base in order to calculate p'.

3 The Simplified Bishop and The Nonveiller method

The Nonveiller method is extended to general slip surfaces from the simplified Bishop for slip circles (Nonveiller,
1965). The normal force p' on the base of the slice is also derived from the summation of vertical forces in the force
polygon of Fig. 2 [Equation (7)]. Inter-slice forces must cancel in total sliding mass. Therefore, from the summation of

moment equilibrium of forces acting on each slice about a common point Oc (Fig. 3), the following equation is derived:
SW-x=3S-at>SP 'f—EKW(y'f‘H/Z) _prcosfg cx +2Pwsin/’3’ Sy eeeeeeeesenisii )
From equation (9), we obtain the equation for the factor of safety as follows:

F— Z(C'l +p'tan¢') R 10
C OSWex—SP-f +XKW(y+ HZ2) + [L] (10)

where [L]=X Pwcosf3 - x—2X Pwsinf -y

Equation (10) becomes the simplified Bishop method (Bishop, 1955), because f equals zero in the slip circle and
becomes the Nonveiller method in the slip surfaces of general shape. Inter-slice forces X'i+7, X'i are ignored in both
methods. In case that the inter-slice forces are considered, equation (10) is called the Bishop's rigorous method in the slip

circle. The factor of safety can be computed by iteration.

Fig. 3 Moment of external forces acting on each slice about a common point Oc.

4 The Morgenstern-Price method
In the Morgenstern-Price method (Morgenstern & Price, 1965), a relationship between vertical and horizontal inter-

slice forces is assumed as follows:
X: A .f(x).E' .................................................................................................................. (11)
where X denotes the vertical shear force on the side of the slice,
A is a parameter,

and f{x) is the factor of inter-slice force.

From the equilibrium conditions acting on an infinitesimal slice (Fig. 4), we obtain:
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1 2
- E L + N 2 B R T T T TP PP PP PP PP PP PP 12
T+K [ x] (12)
where
tan ¢’
K= Xk + A
F
tan ¢’ tan ¢’
L=2Am +Al +1—A
F F
tan ¢’ tan ¢’
N=P +A— ru(l+A?) ——
F F
c’ tan ¢’ tan ¢’
=—{U+A)+qg | —+ A —rn(I+A>) ——
F F F
y=Ax+B
aw n
dx =pxTgq

f=kx + m, the function fis defined by equation (11) depends linearly on x.

Eo equals zero at the beginning of the slip surface in the usual case. The value of Ex at the end of a slip surface is
determined by integration across each slice. Ex is usually zero from the boundary conditions.

From the moment equilibrium about the mid point of the infinitesimal slice, after simplifying and proceeding to the
limit as dx —0, the following equation is derived:

X=LEyy—y L L (popy—y L (13)
_dx( yt)ydx dx(w)ydx
By integrating equation (13), we obtain:
x dy
M=E(yr—y)=f(X—E—)dx ........................................................................ (14)
X0 dx

¥s
| aw

Fig. 4 Forces acting on an infinitesimal slice.
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Since moment equals zero at the end of the slip surface in general, M» = 0 when moment equilibrium is satisfied in a
slip surface. The factor of safety is computed from equations (12) and (14) by the Newton-Raphson method in assuming
f(x) values. The validity of the results needs to be examined from the magnitude and distribution of inter-slice force and

it's acting point.

5 The Spencer methods
Spencer proposed two methods of slices (Spencer, 1967, 1973). The resultant inter-slice force of Spencer method
(1967) for slip circle is expressed as Q, of which angle is assumed parallel in all slices. This method can be extended
to general shapes by modifying angles of the inter-slice force Q (Spencer, 1969). In the Spencer method (1973), inter-
slice force X', E' is expressed as resultant force Z and angle of inter-slice force Z is defined as 6. The method in 1973 is
described in this section.
From two equations of vertical and horizontal force equilibrium conditions in Fig. 2, an expression between Zi and Zi+1

is obtained as follows:

+ [C] +
Zivl = Zi E{»M ........................................................................... (15)
[F] [F]

where [G]=cos(a — ¢i) + tan ¢'m sin( a — )
[B]=tan ¢'m (Wcos @ — ul) + c'm bsec a — Wsin «
[Cl= (Psi —Psi+1—KW) *(cos a +tan ¢'m sin a )
[D]=(sin(3 — «) + tan ¢'mcos( 3 — a )} Pw

[Fl=cos(a — Oi+1) +tan ¢'msin( @ — Oi+1)

For the first slice, Zo is taken as zero and the expressions give the value of the next Zi+1, step by step, finally giving Zn.

When the force equilibrium is satisfied in a sliding mass, inter-slice force at the end of the last slice becomes zero.

Fig. 5 Moment of forces about point A; .
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Fig. 6 Moment of forces about point A .

From the moment equilibrium about the middle of the base of the first slice (A7, Fig. 5), the vertical distance X7 from

A1 of inter-slice force Z1 is derived as follows:

Pwi Hisin 81—KWi-H/2 ~+ Pso h'ti—Ps1 h'ri

. € = R R R R R R TR R 17
! Zicos 01 a7
therefore,
Pwi Hisin 31—KWi-H1/2 =+ Pso h'ti—Ps1 h'ri
II=brtan01/2—bitan (— «1) /2+ > 77 (18)
1cosf1

By step by step computations of I2, I3, -+, Inis derived from deduction as follows:

n

1
In:bn(tangn_tanan)/2+— Z[J] ............................................................... (19)
Zncos On j=1

where J=Zj-1 {sin 0j-1 (bj + bj-1) —cos 0j-1 (bjtan «j + bj-1 tan aj-1)}/ 2 + Pwj Hj sin 3j
—KWjHj/2 +Psj-1h'ti —Psj h'ri

From the moment equilibrium about the middle point (A») of the base of the last slice (Fig. 6), the following equation

is obtained.

XnAn €08 On-1 Zn-1 + Pwn Hn sin 3n | 2—HnKWa + Psn-1 (— h'tn) = Psn B'kn = 0 sveeesssssessessssnnnnsennninnnnnn, (20)
Therefore,
Hn KWn /2 — Pwn Hn Sil’lﬁn + [PH:I (21)
"o Zn-1cos On-1
where [PH] =Psnh'rn — Psn-1 (*]’l'Ln)
XnAn is also derived using equation (19) in the last slice as follows:
XnAn =In-1 +bn (tan Gn-1 —tan an) /2
n-1
=bn-1(tan On-1 — tan an-1) /2 + D[] bn(tan @n-1 — tan an) /2 cerreeerreeereaeeneneataeitanne (22)

Zn-1c0OS On-1 j=1
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where

-1

3

[J]= }_121[]] — Zn-1 {sin 0 n-1 (bn+bn-1)—cos On-1 (bntan a n+bn-1tan an-1)} /2
J=

j=1

— Pwn Han sin B + HyWn/2—Psn-i (_hrm> P 'Rttt (23)

From equations (21), (22), the following expression is obtained for the moment equilibrium in a sliding mass.

The factor of safety is calculated from equations (16) and (24) by the Newton-Raphson method. The validity of the
results needs to be examined from the magnitude and distribution of the inter-slice force and it's acting point.

6 The proposed method

This method (Furuya, 1986) was proposed assuming the parameter i of an angle of inter-slice force similar to the
Spencer method (1973). It generalizes a common point of moment equilibrium different from the first point of slip
surfaces. From the vertical and horizontal force equilibrium (Fig. 2), the following expression concerning E'i+1, E'i is

obtained, assuming the relationship between the vertical and horizontal inter-slice forces, X'i = E'i tan 0.

A + +
iyl = uE'H— w .............................................................................. (25)
[£] [E]
where [Al=tanfisina + cosa — tan ¢'m (tan icosa —sina )

(Bl =tan ¢'m (Wcos @ —ul) +c'mbseca —Wsina

[C] = (Psi—Psi+1—KW ) (cos a +tan ¢'m sin a )
[D]={sin(3 —a ) +tan¢'mcos( S — a)}Pw

[E] =tan fi+1sina +cos a —tan ¢'m (tan fi+; cos « —sina )

E'0 is taken as zero for the first slice and the expressions give the value of the next E'i+1, step by step, finally giving E'n.

When the force equilibrium is satisfied in a sliding mass, inter-slice force at the end of the last slice becomes zero.

Considering the moment equilibrium condition, the resultant force of E'i and E'i+! is expressed as A E and the resultant
force of X'i and X'i+1 is expressed as A X. The moment of inter-slice forces, AX and A E, in each slice about a common
point Oc (Fig. 7) is expressed as follows:

Mi =x0i AX +(yoi —h) AE = x0i AX+yoi AE—h AE  =+eeeeeeesssersen 27)

On the other hand, the summation of the moment of forces in each slice about the mid point of the base must also

cancel. Then, we have the following equation:
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where mi = Hi Pwi sin 3i—Hi KWi/2 =+ Psih'i—Psi+1 h'i+1

Substituting (28), and X'i = E'i tan 0i, X'i+1 =E'i+1 tan 0 i+1 into (27), we obtain the following equation:

Mi = xoi (X'i+1—X'i)Fyoi (E'iv1—E") —mi

xoi (E'i+1 tan Oi+1 —E'itan i) +yoi (E'i+1— E ) —mi

(.in tan 0 i+ +y0i) E’l’+[ i(xOl- tan Hi+y0i) E’l- B/ B R EE R R R (29)

i

=

bi
2

oo

Fig. 7 Moment of the inter-slice forces AX, A E about a common point Oc .

When the moment equilibrium condition about a common point Oc is satisfied in a sliding mass, the summation of

moment of inter-slice forces must cancel in the sliding mass. Therefore, we have the following equation:
Ig] I:Ml] - 0 .................................................................................................................. (30)

The factor of safety is computed from equations (26) and (30) by the Newton-Raphson method or linear reverse
interpolation method. The validity of the results needs to be examined from the magnitude and distribution of inter-slice

force and it's acting point.

7 Relationship between the proposed method and the Spencer method

In this section, the moment equilibrium equations of the proposed method and the Spencer method (1973) are discussed.
In the moment equation of inter-slice forces about the common point Oc by equation (29), E'i, xoi and yoi can be replaced
by Zi, xzi and yzi respectively. Then, the moment equation of inter-slice forces by equation (29) about the common point
O, the first point in a sliding mass (Fig.8) , is expressed as follows:

Mi = (xzi*sin i — yzi *cos 0i)*Zi —(xzi*Sin 0i-1 — yzi © COS i1 )= Zicl — i ==++eeererrsssennsesnneteiiiniiii 31)

Calculating xzi and yzi by bi, bi tan «i sequentially,

M1 = (b1/2'sint91) — DI/2taAN Q1°COS (1 71 — HLI  tvteeteetessestontentsutentttiiteitetteietittittiaciuciacincencenes (32)
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M2 =

{ (b1 +b2/2)-sin 02 —(bi-tan a1 +b2/2- tan a2)-cos 02 } - Z2

M3 =

— { (b1+b2/2)-sin 82 —(bi-tan a1 +b2/2-tan a2)-cos 62 }Z1 — m2

I (b1 +b2 +b3/2)-sin 63— (b1 tan a1+ b2 tan a2+ b3/2tan a3)-cos 03 } - Z3

— | (b1 +b2+b3/2)-sin 03— (b1 tan a1 +b2 tan a2 +b3/2-tan a3)-cos 03 }-Z2 — m3

Fig. 8 The arm length of moment for inter-slice force in a sliding mass.

Mn={(bi+ -+ +bni1+bn/2)-sinO0n —(bitan ai + +*+ +bn1tan an-1 +bn/2-tan an)-cos On}*Zn
—{(b1 + -+ +bni+bn/2):sinOn-1 —(b1tan a1+ -+ +bn-1tan an-1+bn/2-tan an)-cos On-1 }*Zn-1
— Nn

The moment equation in a sliding mass is derived as follows:

(35)
nZI (Mi] = — Zi+{sin 01+ (b1+b2)—cos 01+ (b1 tan a1+ b2 tan «2)}/2
—Z2+{sin 02+ (b2+b3)—cos #2- (b2 tan a2+ b3 tan a 3)}/2
—Zn-1*{sin On-1*(bn-1~+bn)—cos On-1+(bn-1 tan an-1+bn tan an) }/2 —2} 1 A (36)
Therefore, the following relation can be obtained from equation (31),

n; [Mi] =—i} [Zi-1+{sin Oi-1+ (bi + bi-1)—cos Oi-1+(bi tan i+ bi-1 tan i-1)}/2] — 2 [mi]

(37
Equation (37) clearly shows that the equation of moment equilibrium of the proposed method is essentially the same
as the Spencer method(1973), though the sign of the equation becomes reverse.
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IV Relation between inter-slice force, force and moment equilibrium in each method of slope stability analysis

The relation between each method of slope stability analysis and inter-slice force, force and moment equilibrium,
is shown in Table 1. These methods are generally derived under force and/or moment equilibrium conditions with
assumptions concerning the inter-slice force. The Morgenstern-Price and the Spencer (1973) methods are recognized
as general limit equilibrium methods of slices and the factors of safety are computed by the conversing technique of
the Newton-Raphson method. The method proposed in this paper is also a general limit equilibrium method of slices as
simple as the Spencer method (1967, 1973).

Fredlund and Krahn compared several limit equilibrium methods of slices for slope stability analysis and showed the
relation between inter-slice force, the force and moment equilibrium(1977). Figure 9 is an example of the section of a
slice surface and Fig. 10 is the results of the analysis of this example. The value of the factor of safety Fm calculated by
the moment equilibrium equation varied slightly with the change in the parameter A, because X'i, X'i+ are involved
only in p'. Furthermore, in the general slip surface, the factor of safety Fm is barely influenced by the inter-slice force,
because the moments of P in each slice cancel each other totally and the value becomes relatively small. On the other
hand, the value of the factor of safety Fr calculated by the force equilibrium equation varied greatly with a change
of parameter A, because the horizontal component of inter-slice force E is involved in the denominator of the slope
stability equation (8).

Point A in Fig. 10, with A = 0, results in an inter-slice force of zero. This gives the same value as the simplified
Bishop method in the slip circle and the same value of the Nonveiller method in a general slip surface.

Point B gives the same result as the simplified Janbu method that has not been corrected. This value can be corrected
by the correction factor or X'i, X'i+/ calculated from the moment equilibrium equation and approaches the results of a

rigorous solution (Fredlund and Krahn, 1977, Kawamoto, 1981).

Table 1 Methods of slope stability analysis, force and moment equilibrium, and inter-slice force.

Methods of slope Dlele inter-slice
stability analysis force (DVertical (perpendicular to the base of the slice) force equilibrium
Fellenius O O (2Horizontal (parallel to the base of the slice) force equilibrium
Simplified Janbu Ol0O (3Moment equilibrium
Simplified Bishop O O O+~ Satisfied
Nonveiller O O
Spencer O | O | O |Considered
Morgenstern-Price O | O | O |Considered
The Proposed O | O | O |Considered
(120,90)
60
Y =120 pct

o) @'=20° CONDITION 2 (weak layer)

S 40t 600Pst ¢=0, @=10°

=] T~

.2 -

N

Pl TRIC LIN

S EZOMETRIC LINE 3

2 20

2}

BEDROCK
L Il 1 1 1 L 1 J
0 20 40 60 80 100 120 140"

Distance (ft)
Fig. 9 An example of a slip surface (Fredlund and Krahn, 1977).
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Fig. 10 Relation between the factor of safety, methods of slope stability analysis and A
(Fredlund and Krahn, 1977).

Point C in Fig.10 gives a value that satisfies the force and moment equilibrium conditions simultaneously, a so called
rigorous solution. Because the change in the Fm value by A is small, the simplified Bishop method and the Nonveiller
method give results close to the rigorous solution in many cases, although inter-slice force is ignored, provided the
common point of moment in the Nonveiller method is needed to be set as far as possible in the center of the general slip
surface.

The Fellenius method, which is used in the analysis of general slip surface of landslide in Japan, generally gives smaller
values than the rigorous solution. This value depends on the shape of slip circle and/or underground water level, whether
smaller or larger than point C.

Figure 11 is an example of the slip surface of a fill dam and Fig. 12 shows the results of analysis of Fig.11 and
the characteristics of force and moment function of three methods by parameter. The Spencer method (1973) and
the proposed method give fundamentally the same value for factor of safety from the equations of force and moment
equilibrium in the assumption X'i =E'i tan 6 (Furuya, 1986). The Morgenstern-Price method gives almost the same result
as the Spencer method (1973) from the differential equations of force and moment equilibrium in the assumption X'i = A
*f{x)- E'i. This is similar to the assumption of the Spencer method (1973), even though the value of the results is slightly
different because of the numerical solution technique (Kawamoto, 1981, Furuya, 1986, Kondo, 1997).

|| 6o
7t (kN/m?) 245 | 245 | 245 | 255
7 sar (kN/m?) 257 | 263 | 245 | 266
¢ (KN/m?) 2646 | 49 | 0.0 | 147
4 (degree) 36.0 | 350 | 33.0 | 22.0

Fig. 11  An example of the slip surface of a fill dam.

However, in the computation of the factor of safety from the moment equation, the characteristic of function Fm
changes remarkably, depending on the position of the common point of moment (Furuya, 1986). The Spencer (1973) and
the Morgenstern-Price methods satisfy the moment equilibrium conditions summing the inter-slice force of total sliding
mass about the starting point of the slip surface as a common point of moment, point O: (Fig. 8). On the other hand, the
proposed method sums the inter-slice force of total sliding mass about point Oc as a common point of moment (Fig. 8).

Figure 13 shows a slip surface and positions of center of moment as an example of computation. Figure 14 shows the
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Fig. 12 Characteristics of force and moment function for three methods by parameter 6 .
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Fig. 13 An example of a slip surface (Lambe & Whitman, 1979)
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Fig. 14 Variation of the factor of safety that depend on the common point of moment

results of analysis of the slip surface in Fig. 13 and the characteristic of function Fm depending on the changes in the
common point of moment. These figures show that the function Fm becomes almost simple straight line as approaches
point O¢, however, that the function Fm becomes hyperbola about point O-. In the hyperbola function, it is difficult
to obtain simple result in the conversing computation of the Newton-Raphson method, if the initial value of i is not
proper. In this case, we need more optional work to find the proper initial value of i, by writing a more complicated
computing program. Even though we can obtain the results, the number of conversing computations increases as the
curvature of a hyperbola increases. On the contrary, if the F function is close to a straight line, we can obtain results
with a few conversing computations simply giving the initial value of ¢i. Therefore, we have an advantage in setting

the point Oc as the common point of moment, when the moment of inter-slice forces is summed in the total sliding mass
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(Furuya, 1997). The proposed method is more general for expression of inter-slice force than the Spencer method (1969),
and more practical and advantageous in computation of moment in a total sliding mass than the Spencer (1973) and the

Morgenstern- Price methods.
V Inter-slice force and side water pressure

Figures 15 and 16 show the example of comparative analysis of the section shown in Fig. 11 in the case of effective
inter-slice forces X'i and E'i calculating side water pressure as statically determinate stress, and in the case of the total
inter-slice forces Xi and Ei including side water pressure as statically indeterminate stress. These figures show that Ei is
almost the same as E'i + Psi, though Xi is slightly different from X'i. Both computing methods gave the same factor of
safety, as Ugai et al. (1985) also indicated a similar result. In the Ordinary method, thus, we can obtain more accurate
results in the method that calculates side water pressure Psi as a statically determinate stress and ignores only X'i and E'i
than in the method that ignores total inter-slice forces Xi and Ei.

W/ m? _(t’/mz)

X 490 F50) A \&
& 392 b0 X .9//‘ ~. )
] ~

' ’ 'S ~ /\
Xi 294 60 , (Y
o !
196 (20 g / "Q
.’ A
98 o) 7 0 \,/}
, o “
ol 1 L__oa
50 100 m

Horizontal distance of slip surface

Fig. 15 Comparison of inter-slice force Xi and X"i.
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(tf/ m
4900 |
(300)
Ei \ﬁ/\
3920 Ei"l’..i4 '
(100) . \
Ei / Pii \
2940 | iR
& (300
Ei' Iy
& / A
. 1960 | SN\
Psi 00 ; ; \
\i 2
A Y
980 | s Ei 2l
(100) 3 3

50 100m
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Fig. 16 Comparison of inter-slice force Ei and E'i .

W Computing method of pore water pressure by buoyancy (The buoyancy method)

In limit equilibrium methods of slices, there are two methods to compute the pore water pressure on each slice. One
method individually calculates water pressures acting on the upper, both sides, and the base of the slice. The other is a
method to calculate the buoyancy acting on the slice. The latter is simple and convenient, but, we need to modify the

method for calculating buoyancy under the steady seepage flow conditions. Essentially the same results as the former
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can be obtained by the modified buoyancy method, which corrects the direction of the buoyancy vector by a hydraulic
gradient (Furuya, 1985, 1996).

The buoyancy P« becomes equal to the weight of water that is equivalent to the submerged space of the slice and acts
vertically and upward as shown in Figs. 17 & 18. The buoyancy P« acting on the slice under the steady seepage flow
conditions is shown in Fig. 19. In this case, the buoyancy Pu changes the direction as shown in Fig. 20. If we assume the

hydraulic gradient through each slice to be a straight line, the inclination to the vertical becomes equal to the hydraulic

\\ Psi+1
-
A

gradient ¢ as shown in Fig. 19.

Pw " Psi
: Pll
:Buoyancy

Fig. 17 Relation between water pressure and buoyancy Pu in a submerged slice .

Psi+1

e Psi
Pu,
1 Buoyancy

Fig. 18 Relation between water pressure and buoyancy Pu in a partially submerged slice .

<—b—)

X'iv1
E'i+1

Ti+1

w
Fig. 19 Forces acting on a slice expressed by buoyancy .

Psi1
U Pu ‘ Psi

Buogancy

Fig. 20 Relation between water pressure and buoyancy Pu under the steady seepage flow conditions.

The buoyancy on the slice under the steady seepage flow condition acts vertically and upward and this force is
equivalent to the water weight of the submerged space of the slice. At the same time, the force that is multiplied by tan e

acts on the slice horizontally. The hydraulic gradient e is zero in submerged and partially submerged slices. Therefore,
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if we assemble the equation based on this idea, it is possible to express the buoyancy acting on the slices systematically
under submerged, partially submerged, and steady seepage flow conditions.

Pore water pressures acting on the base and both sides of the slice should be calculated from the potential line in a
strict sense, because pore water pressure under steady seepage flow conditions is different from the water depth at a
point on the slip surface. However, the water depth is sometimes used as pore water pressure directly and conveniently,
and the pore water pressure is excessively estimated when the hydraulic gradient changes rapidly. As a simple modified
calculation, we can correct the pore water pressure by multiplying the water depth by cos® ¢ in the slice, assuming a
straight potential line (Fig. 21, Furuya, 1981). The side water pressure can also be modified by cos® € , and buoyancy can
be calculated by the modified direction. The equations for limit equilibrium methods of slices are similarly introduced by

the polygon in Fig. 22 (Furuya, 1996).

) Potential line
&\ _+—

E'i+1
Fig. 22 Force polygon expressed by buoyancy under steady seepage flow conditions

King (1989) also described the steady seepage flow conditions in a assumption with a straight potential line (Figs. 23,
24) as indicating the water pressure F's by seepage flow with buoyancy. The water pressure Fs is derived as follows:

Fs = ’}/W'b'/’l'sinﬁx ......................................................................................................... (38)

Where 7w : unit weght of water

0x: same value of € shown in Fig. 22

The resultant force becomes d ¢ (Fig. 25) and gives essentially the same result as the proposal method that water
pressure is modified by cos? e (Pu= P'u*cos’ ¢ ). As a result, The equation of the limit equilibrium methods of slices in
the buoyancy method is introduced by the polygon in Fig. 22.

In addition, it has been considered that the conversing condition of inter-slice force, 2 E =0 or 2E'= 0 (E = E' + Ps)
gives the same factor of safety in the general limit equilibrium method of slices. However, as King described in the

discussion with Sarma (King, 1990), water pressure cancels in total sliding mass in case of a horizontal water surface. Vil
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On the other hand, when seepage flow exists, the final results of the former computing method may be influenced by an

error in water pressure balance because it is not canceled in the total sliding mass. Therefore, computing accuracy of the

factor of safety certainly increases when water pressures are treated as statically determinate stresses in calculation of the

water pressure on a slice. In calculation of water pressure by buoyancy, accuracy clearly increases when we consider the
seepage force, if it is under steady seepage flow conditions.

Equipotential
Line

HI)’W

h

/ /
T .
b Phreatic surface
[ ———>
A
w

hz
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T
o\ |
E\RW)\ v whzcos? 6 x

N

Fig. 23 Water pressure Fs by seepage flow and buoyancy (King, 1989).
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Fig. 25 Relation between buoyancy, seepage force Fs and Pu
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The force equilibrium equation (24) of the proposed method can be rewritten by the buoyancy method as follows:

[A] [B]—[C]

Elin] = —— Elib o ettt e (39)
(D] [D]
where [A] =tan 0i-sin a +cos « —tan ¢'m(tan i-cos a« — sin« )

[B]l = c¢'ml +tan ¢'m (Wa + Whb) cos a —(Wa + Wh) sin a
[Cl=(KW+Pu - sine ) (tan ¢'msina + cos a )
[D] =tan §i+1°sin @ +cos @ —tan ¢'m(tan fi+1*cos a —sina)

The moment equilibrium equation (29) also can be rewritten by the buoyancy method as follows:

M=x-tan Qi+i+y+H) E'is1—(x-tan 0i+y+H) E'it H - KW/2 + Hw*Pursin g [2 ceeeeceecereecencesecencecee (40)

The factor of safety is computed from equations (38) and (40) by the Newton-Raphson method or linear reverse

interpolation method.
VI Comparison of computation results by the buoyancy and the total pore water pressure methods

The section shown in Fig. 13 was analyzed by the proposed method of buoyancy described in chapter 6, with constant
0i, Oi+1 and other methods. This is a case in which the hydraulic gradient rapidly changes in the slip surface and it is
difficult to estimate exactly the pore water pressure from the water head in the slice. The pore water pressure, however,
is calculated approximately from the water head in the slice corrected by cos? ¢ as shown in Fig. 21.

The results of the slice method is affected by the number of slices in the slip surface, because of a slightly inexact
acting point of water pressure and slice weight that are the center of the base or the upper. The shape of slip surface
can be easily simulated correctly with more divided slices and the error of moment calculation also decreases, though
input work and computation energy increases. The results of analysis are shown in Table 2. (a) of Table 2 is the results
analyzed by Kawamoto (1981), with the slip surface divided into 26 slices by the total pore water pressure method. (b),
(c), (d) are the results by the author. The calculation result is shown to three places of decimals for comparison, though it
is enough to two places of decimals for practical purposes. The factor of safety by the Simplified Bishop method is 1.29,
and 1.17 by the Ordinary method in the literature(Lambe & Whitman, 1979). These factors of safety shown by lambe &
Whitman are a little larger than the results shown in Table 2 because the pore water pressure calculated by us is larger
than the accurate value with the error of A U shown in Fig. 21. The proposed method with 26 slices by the buoyancy
method gives the same result as the Spencer and the Morgenstern-Price methods with 28 slices by the total pore water
pressure method. This indicates that the buoyancy method has less error in calculation of moment because of the same

acting point of buoyancy to slice weight.

Table 2 Comparison of the results of slope stability analysis.

(a) by Kawamoto(1981) 26 slices (b), 26 slices (c), 28 slices (d), 26 slices
Total pore water Total pore water Total pore water Buoyancy
Ordinary 1.123 1.125 1.127 1.126
Simplified Bishop 1.259 1.257 1.258
Nonveiller 1.250
Spencer 1.264 1.265 1.261
Morgenstern-Price 1.264 1.265 1.261
The Proposed 1.261
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Conclusion

The Ordinary or Fellenius method has been the most fundamental and important method in the design of
countermeasures for landslide or general slope stability analysis. This method gives a lower factor of safety than the
general limit equilibrium methods of slices in many cases. However, this is improved partly by accurate computation
of pore water pressure. The simplified Janbu method approximates the rigorous solution by a correction factor and
the Janbu's rigorous method also gives good result which approaches the results of a rigorous solution in many cases.
However, it is as workable as the general limit equilibrium method of slices. The Nonveiller method gives a factor of
safety close to the rigorous solution in many cases, even though inter-slice force is ignored, if we set the common point
of moment as close to the center point of slip surface as possible.

Nowadays, we can utilize high performance personal computers conveniently and easily compute factors of safety
automatically by the general limit equilibrium methods of slices, such as the Morgenstern-Price method, the Spencer
methods, and the method proposed in this study. In computation of the general limit equilibrium method of slices, we
have an advantage in setting the common point of moment as near the center of slip surface as possible rather than setting
it at the beginning point of the slip surface. The proposed method is simpler in expression of equations and also practical
computation for this reason. This is very important for extension to three-dimensional analysis and/or application to
geologically complicated slip surfaces.

In addition, a method of how to determine the factor f{x) or i of inter-slice force reasonably needs to be developed and
this is a topic for on going research.

We can calculate simply and accurately pore water pressure by the seepage force with buoyancy under hydrostatic
pressure and steady seepage flow conditions with the assumption that hydraulic line is straight in a slice, if the hydraulic
gradient is not too large. When the hydraulic gradient rapidly changes, the width of the slice needs to be divided into

smaller to increase calculating accuracy.
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