東北日本海側1年1作地帯の大規模水稲・大豆輪作集落営農型法人 におけるスマート農業による生産性向上の実証

<u>(農)たねっこ(</u>秋田県大仙市協和)

背景及び取組概要

<経営概要 286ha(水稲178ha、大豆101ha、野菜7ha) うち実証面積 水稲 25ha 大豆25ha >

- 〇大規模化が進む水田作(稲・大豆)生産のコスト低下、効率化に向け、スマート農業技術を活用する。具体的課題は、
- ①作業補助者を担ってきた組合員の高齢化に伴う職員の負担の軽減②1ha圃場を活かす高能率作業体系の確立
- ③輪作長期化に伴う地力・排水性の圃場間差拡大 ④大区画化に伴う圃場内の地力むら
- 以上の課題解決にスマート農業技術の導入が不可欠であり、効率的かつ効果的な技術体系の確立を図る。

導入技術

要素技術 ①可変施肥、②自動操舵、③直進アシスト田植機、④ラジコン草刈機、⑤ドローン生育診断、⑥灌水支援システム、 ②収量コンバイン、⑧ほ場管理システム

時期	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
「見られる!」 ポイント	0	2	2	5 6	4		0					

①可変施肥ブロードキャスタと施肥地図 ((株)IHI アグリテック)NDVI 生育地図 施肥量設定地図

目標に対する達成状況等

実証課題の達成目標

- 実証経営を想定した営農モデルで収益5%増加
- 水稲作では、良食味品種の収量2%増、高密度播種苗栽培 収量5%増、移植資材費5%減、耕起~代かき作業時間10%減
- 大豆作では収量5%増、播種、中耕、培土作業精度±5cm、耕起~培土作 業時間11%減

各研究項目の現在の達成状況

- ① 実証経営を想定した営農モデルで収益(農業所得)12.5%増加、 目標を上回った
- ② 水稲作では良食味品種収量5%増、高密度播種苗栽培収量1%増、 移植資材費10%減、耕起~代かき作業時間2.1%減
- ③ 大豆作では大豆潅水支援システムの効果があり、収量29%増 また播種、中耕、培土作業精度±5cm、耕起~培土作業時間では6%減ま で達成した

成果① 水稲圃場の自動操舵トラクターによる耕うん・代かきの高能率化

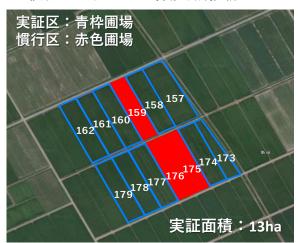
取組概要

○ RTKGNSS自動操舵装置を搭載したトラクタを用いて、耕起作業および代かき作業を行い、行程数と旋回回数を削減するため、耕うん作業の運行方法を改善することで、作業時間10%削減を実証する。

(使用機器)トラクタ(MR97-PC、クボタ社製97馬力)、自動操舵装置(X25、AGI-4、AES-35、トプコン社製)、アタッチメント:ロータリー (KRV260、小橋工業社製作業幅283cm ※耕起作業)、サイバーハロー(TXZ501、"作業幅497cm ※代かき作業)

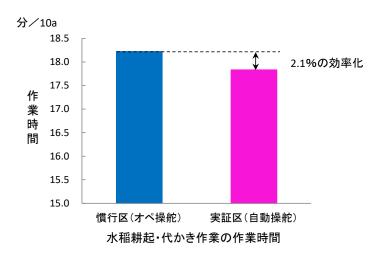
(作業方法)

①耕起作業・実証区:自動操舵、1行程空け作業


※行程間の重なり幅を10cmに設定

・慣行区:オペレータ操舵、隣接耕で作業

②代かき作業・実証区:自動操舵、隣接耕


※行程間の重なり幅は荒代かき5cm、仕上げ代かき10cmに設定

・慣行区:オペレータ操舵、隣接耕

実証結果

- 代かき作業において、荒代は実証区における行程間の重なり幅を5cmに設定したことにより、1圃場あたりの直進作業行程数が慣行区よりも1行程減少し作業時間が短くなった。
- 耕起および代かきの合計作業時間は実証区 17.83分/10a、慣行区18.22分/10aで、実証区の作業時間は慣行区に対して2.1%削減できた。作業時間の目標は未達だが、耕起作業において、慣行区は行程間に耕起できていない部分が確認されており、作業精度の効果ゆえに生産者からは高評価であった.

成果② 直進アシスト田植機による移植作業の高能率化・省資材化

取組概要

○ 直進アシスト、速度連動機能を利用した田植機により高密度播種 苗の直進移植を行い、高密度播種苗および速度連動を利用した時の 作業時間および移植資材費の5%削減や作業精度を検証する。

(使用機器) 直進アシスト田植機(NW8S-F-GS、クボタ社製8条)

(肥料)らくだ君有機一発499(側条施肥)

(農薬)Dr.オリゼフェルテラグレータム(側条施薬)

(作業方法)

①実証区: 直進アシスト+速度連動、高密度播種苗使用 (播種量250g/箱)

②慣行区: 直進アシスト+速度連動を解除、中苗使用 (播種量130g/箱)

※試験圃場は実証区、慣行区ともに水稲耕起・代かき試験と同じ。

実証結果

- 移植資材費(苗箱、床土、種子、基肥、箱施薬、光 熱等)全体の削減割合は10%で、目標とした5%削減 を上回った(表)。移植作業の作業時間は実証区8.6分 /10a、慣行区10.1分/10aで、高密度播種苗の使用 による苗継ぎ時間の減少により、14%削減できた。
- 施肥量については、実証区では設定量の100.1% であったのに対し、慣行区では設定量の91.3%であっ たことから、速度連動機能によって、実証区では、より 正確な施肥が実施できた。

表 移植資材費の削減効果 単位:円/10a

	慣行区	実証区
種苗費	1,814	1,312
肥料費	5,287	5,918
農業薬剤費	4,506	4,400
その他諸材料費	3,449	1,863
光熱費	742	742
計	15,798	14,235
	コスト低下	10%

成果③ リモコン草刈機による法面除草の軽作業化

取組概要

○ リモコン草刈機で畦畔の法面除草を軽作 業化、高能率化する。

目標:作業時間10%削減。

(使用機器) リモコン草刈機 クボタARC-500

傾斜度が大きいと作業できないため、使用できる畦畔が 少なかった。また、防水機能がなく、雨天での作業がで きないため、継続使用にならなかった。

実証結果

- 休憩時間を除くとリモコン草刈機は刈払い機より15%以上作業能率向上(図)。
- リモコン草刈り機は刈払い機に比べて作業後のだるさ感が小さく、 肉体的疲労が少なかった(表)。

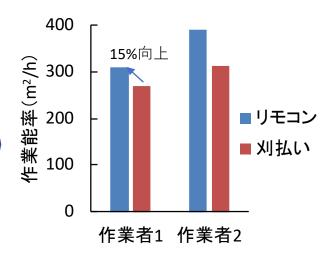


図 リモコン草刈機の作業能率

約2時間ずつ作業した 作業者2のリモコン草 刈機は平面のみ作業

表 リモコン草刈機の自覚症しらべ

自覚症群	リモコン草刈機				刈払い機			
	作業前	作業中	作業後		作業前	作業中	作業後	
ねむけ感	1.4	1.1	1.1		1.2	1.7	1.8	
不安定感	1.0	1.2	1.0		1.0	1.1	1.0	
不快感	1.1	1.2	1.1		1.1	1.4	1.5	
だるさ感	1.8	1.8	2.2		1.0	3.0	3.4	
ぼやけ感	1.1	1.3	1.1		1.0	1.0	1.0	

数値は自覚症群を示す25項目について、1点「まったくあてはまらない」~5点「非常によくあてはまる」迄の5段階に対して作業者2名が回答した平均値.

成果④ 自動操舵を利用した大豆作業の高能率化・高精度化

取組概要

○ 大豆の耕起作業について、RTKGNSS自動操舵装置を搭載したト ラクタで耕うん①粗耕起はスタブルカルチ、②整地作業はロータリに より作業を行い、作業時間の削減効果(耕起~培土作業時間11% 減や作業精度(播種、中耕、培土が土5cm以内)、を検証する。

また、RTKGNSS自動操舵を搭載した乗用管理車により播種、除 草、中耕、培土作業を行い、踏みつけ程度を慣行と比較するととも に、作業時間の削減効果を検証する。

(使用機器)

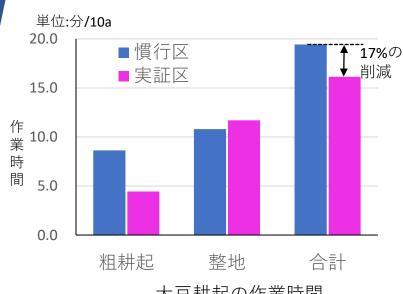
耕起作業:トラクター(MR97-PC、クボタ社製97馬力)、 スタブルカルチ(C258EB、スガノ農機社製 作業幅273cm)、 ロータリー(SKL2600D-4L、ニプロ松山社製 作業幅260cm)、 自動操舵装置(X25、AGI-4、AES-35、トプコン社製)

(作業方法)

① 粗耕起 ・実証区:自動操舵、スタブルカルチ耕、1行程空け作業

※行程間の重なり幅を5cmに設定

慣行区:オペレータ操舵、ロータリー耕、隣接耕で作業


② 整地 ・実証区:自動操舵、ロータリー耕、隣接耕

※行程間の重なり幅は5cmに設定

・慣行区:オペレータ操舵、ロータリー耕、隣接耕

実証結果

- 大豆耕うん作業の作業時間は、粗耕起におけるスタ ブルカルチ耕の導入により作業時間が短縮され、粗耕 起と整地作業の合計では実証区16.14分/10a、慣行区 19.44分/10aで17%削減された。耕起~培土までの作業 時間は6%削減した. 作業精度は±5cmを達成した.
- 料耕起のスタブルカルチ耕は慣行のロータリー耕に 比べ砕土率が低くなったが、整地でロータリー耕を行う ことにより、砕土率が高くなり、大豆の出芽率に有意差 はなかった。

成果⑤ 大豆潅水支援システムの効果による収量29%増

取組概要

○ 大豆への適期潅水を行うために乾燥ストレス時にアラートを発出する潅水支援システムを実証圃場に導入し、土壌水分の推定値をリアルタイムで把握する。必要に応じて潅水を行い、その潅水条件および効果を評価する。農家慣行に対して収量5%増の目標に対する達成状況を把握する。また、実証による生産者からのフィードバックを参考に大豆潅水支援の利便性・効果を高める改良を行う。

(使用機器)

大豆潅水支援システム(Webシステム)

(作業方法)

- ①システムの導入:サーバーをレンタルし、システムを導入。圃場情報を入力
- ②潅水:アラートが発出した際には畝間潅水を行う。潅水水量、表面が浸潤した面積および全刈収量を求めた。

(試験区の構成)・実証区:25ha。アラートに応じて最大限潅水する。

図 潅水支援システム の画面

赤丸で示された圃場は 乾燥ストレスを生じてい るというアラートが発出 された圃場を表す

実証結果

- 2ヶ年平均で収量が29%増加し目標を達成した。 ただし、増収効果は年次間で大きく異なった。潅水 による病害まん延等は観察されなかった。
- 1t/minの水量を確保できれば、畝間潅水によって1haの圃場にも潅水可能。

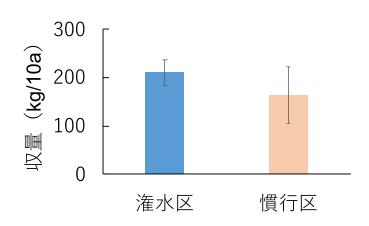


図1 実証圃場の収量増効果(2年分)

〇 残された課題と対応

・社会実装について、大豆灌水システムは、山形 県全体5000haに普及している。さらに現地の利用 者にとっての利便性を改善する必要がある。

実証を通じて生じた課題

実証を通じて生じた課題

1. 今回の実証で導入したスマート農業機械・技術

	作業内容	機械・技術名	技術的な課題
1	可変施肥	ブロードキャスタ(GPSナビ)	ドローンの集める NDVI 値を施肥量に変換 する方法が未確立
2	草刈り	リモコン草刈り機	作業可能な傾斜度が小であり、実証地では 作業可能な法面の割合は63%のみ 雨天では作業不可
3	大豆熱画像診断	ドローンおよび赤外線イメージ撮 影技術(Dji・matrice200mk2、 FLIR:Zenmuse XT6432R)	大面積の撮影と高画素数の両立が困難

2. その他

課題ではないが、要望として、営農支援ソフトは複数圃場の収量マップを一度に表示して欲しい。収量マップをGeotiffで取得出来るようにして欲しい。

問い合わせ先

〇 問い合わせ先

農研機構東北農業研究センター 笹原和哉(ささはらかずや) (Tel:019-643-3433 e-mail:sasa@naro.affrc.go.jp) 本実証課題は、農林水産省「スマート農業実証プロジェクト」(事業主体: 国立研究開発法人農業・食品産業技術総合研究機構)の支援により実施されました。

農研機構スマート農業実証プロジェクトホームページ https://www.naro.go.jp/smart-nogyo/